Significant Suppression of Photoluminescence in Eu3+ Doped LaPO4 Inverse Opal Photonic Crystals

Article Preview

Abstract:

Inverse opal photonic crystals of Eu3+ doped LaPO4 (LaPO4: Eu)were prepared by a self-assembly technique in combination with a sol-gel method. In the preparation process, Eu3+ doped LaPO4 precursors were filled into the interstices of the opal template assembled by monodispersive polystyrene microspheres. The polystyrene template was then removed by calcination at 650 °C for 5h, meanwhile, Eu3+doped LaPO4 inverse opal photonic crystal was formed. The photoluminescence (PL) from Eu3+ doped LaPO4 inverse opal photonic crystal was studied. The effect of the photonic stop-band on the spontaneous emission of Eu3+ has been observed in the inverse opal photonic crystals of Eu3+ doped LaPO4. Significant suppression of the emission was detected if the photonic band-gap overlaps with the Eu3+ ions emission band.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 311-313)

Pages:

1217-1221

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Bechger, P. Lodahl and L. W. Vos. J. Phys. Chem. B. Vol. 109 (2005) p.9980.

Google Scholar

[2] C. V. Kumar and A. Caudhari. J. Am. Chem. Soc. Vol. 116 (1994) 403.

Google Scholar

[3] P. Andrew and W. L. Barnes. Science, Vol. 290 (2000) p.785.

Google Scholar

[4] C. E. Finlayson , D. S. Ginger and N.C. Greenham. Chem. Phys. Lett. Vol. 338 (2001) p.83.

Google Scholar

[5] M. Chen, K.P. Ghiggino, S.H. Thang and G. J. Wilson. J. Chin. Chem. Soc. Vol. 53 (2006) p.79.

Google Scholar

[6] S. Noda, A. Chutinan and M. Imada. Nature, Vol. 407 (2000) p.608.

Google Scholar

[7] I. Satoshi, A. Yasuhiko and G. Akiko. Appl Phys Lett, Vol. 91(2007) p.211104.

Google Scholar

[8] Z. W. Yang, J Zhou, X. G. Huang, G. Yang, Q. Xie, L. Sun, B. Li and L. T. Li. Chem. Phys. Lett, Vol. 445(2008) p.55.

Google Scholar

[9] Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, B. Li and C. L. Yu. J. Am. Ceram Soc, Vol. 92 (2009) p.1596.

Google Scholar

[10] G. Li, T. D. Krauss, C. B. Poitras, M. Lipson, X.W. Teng and H. Yang. App, Phys. Lett, Vol. 89 (2006) p.061104.

Google Scholar

[11] X. S. Xu, T. Yamada and R. Ueda. Opt Lett, Vol. 33 (2008) p.1768.

Google Scholar

[12] M. Aloshyna, S. Sivakumar, M. Venkataramanan , A. G. Brolo and V. Veggel. J. Phys.Chem. C, Vol. 111 (2007) p.4047.

Google Scholar

[13] J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam and C. H. Kam. Appl. Phys. Lett. Vol. 76 (2000) p.3513.

Google Scholar

[14] P. Lodahl, A. F. VanDriel, I.S. Nikolaev, A.Irman K. Overgaag, D. Vanmaekelbergh and W.L. Vos. Nature. Vol. 430 (2004) p.654

DOI: 10.1038/nature02772

Google Scholar

[15] P. D. García, Á.Blanco, A. Shavel, N. Gaponik, A. Eychmüller, B. Rodríguez-González L.M. Liz-Marzán and C. López. Adv. Mater. Vol. 18 (2006) p.2768.

DOI: 10.1002/adma.200600376

Google Scholar

[16] J. S.King, C. W. Neff, C. J. Summers, W.Park, S. Blomquist, E. Forsythe and D. Motyon. App. Phys. Lett, Vol. 83 (2003) p.2566.

Google Scholar

[17] B. Li, J. Zhou, R. L. Zong, M. Fu and L. T. Li. J. Am. Ceram. Soc, Vol. 89 (2006) p.2308.

Google Scholar

[18] Z. W. Yang, X. G. Huang, G. Yang, Q. Xie, B. Li, J. Zhou and L. T. Li.. J. Alloy. Comp,Vol. 468 (2009) p.295.

Google Scholar