Single Femtosecond Laser Pulse Irradiation of Silicon on Different Crystallographic Facet Planes

Article Preview

Abstract:

Experiment on ablation of silicon wafer on different crystallographic facet planes by single laser pulse irradiation was carried out with a femtosecond pulsed laser operating at a wavelength of 780 nm and a pulse width of 160 fs. The quality and morphology of the laser ablated silicon surface were evaluated by atomic force microscopy. The ablation threshold fluences on different crystallographic facet planes were obtained through the relationship between the squared diameter of the craters and pulse energy. The effects of different crystallographic facet planes of silicon wafer on the process of femtosecond laser ablation of silicon wafer were studied.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 314-316)

Pages:

1885-1888

Citation:

Online since:

August 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben and A. Tünnermann: Appl. Phys. A: Mater. Sci. Process, Vol. 63 (1996), p.109

Google Scholar

[2] R.L. Harzic, N. Huot, E. Audouard, C. Jonin and P. Laporte: Appl. Phys. Lett., Vol. 80 (2002), p.3886

Google Scholar

[3] G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke and Y. Gerbig: Appl. Surf. Sci., Vol. 208-209 (2003), p.181

DOI: 10.1016/s0169-4332(02)01366-1

Google Scholar

[4] F. Korte, S. Nolte, B.N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich and H. Welling: Appl. Phys. A: Mater. Sci. Process, Vol. 69 (1999), p. S7

DOI: 10.1007/s003399900391

Google Scholar

[5] J.Koch, in: Recent Advances in Laser Processing of Materials, edited by J. Perrière, E. Millon and E. Fogarassy Publications/ Elsevier Science, (2006), in press.

Google Scholar

[6] P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du and G. Mourou: Opt. Commun., Vol. 114 (1995), p.106

Google Scholar

[7] J. Bonse, S. Baudach, J. Krüger, W. Kautek and M. Lenzner: Appl. Phys. A: Mater. Sci. Process, Vol. 74 (2002), p.19.

DOI: 10.1007/s003390100893

Google Scholar

[8] D.J. Hwang, T.Y. Choi and C.P Grigoropoulos: J. Appl. Phys., Vol. 99 (2006), p.083101

Google Scholar

[9] L.M. He: Micromachining for making optical computer using harmonic generations of solid-state lasers, Ph.D. thesis, Chubu University (1999).

Google Scholar

[10] L.T. Qi, K. Nishii, M. Yasui, H. Aoki, Y. Namba: Opt. Laser Eng., Vol. 48 (2010), p.1000

Google Scholar

[11] K. Furusawa, K. Takahashi, H. Kumagai, K, Midorikawa and M. Obara: Appl. Phys. A: Mater. Sci. Process., Vol. 69 (1999), p. S359

Google Scholar

[12] J.M. Liu: Opt. Lett., Vol. 7 (1982), p.196

Google Scholar

[13] L.M. He, Y. Namba: Int. J. Japan Soc. Prec. Eng., Vol. 32 (1998), p.13

Google Scholar