RFID-Based Thermal Bubble Non-Floating Type Accelerometer with Semi-Cylindrical Chamber and Filled with Xenon Gas

Article Preview

Abstract:

This research proposes a wireless RFID-based thermal bubble accelerometer design, and relates more particularly for the technology to manufacture and package it on a flexible substrate. The key technology is to integrate both a thermal bubble accelerometer and a wireless RFID antenna on the same substrate, such that the accelerometer is very convenient for fabrication and usage. In this paper the heaters as well as the thermal sensors are directly adhering on the surface of the flexible substrate without the traditional floating structure. Thus the structure is much simpler and cheaper for manufacturing, and much more reliable in large acceleration impact condition without broken. Furthermore, the molecular weight of xenon gas is much larger than carbon dioxide, thus the performance of the accelerometer will be increased. In addition, the shape of the chamber is changed as a semi-cylindrical one instead of the conventional rectangular type. Comparisons of sensitivity and response time are also made; one can see the performances of the proposed new design with either semi-cylindrical chamber or filled with xenon gas are better.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 317-319)

Pages:

1153-1162

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Hua, L. Jiang, Y. Cai, A. Leung, Y. Zhao, U.S. Patent:US 0,101,813 A1. (2007)

Google Scholar

[2] T.R. Hsu, in: MEMS & Microsystems Design and Manufacture, INSPEC, The Institution of Electrical Engineer, London, U. K. (2004)

Google Scholar

[3] L.M. Roylance and J.B. Angell: IEEE Transactions on Electron Devices, Vol.ED-26 (1979), p.(1911)

Google Scholar

[4] P.M. Zavracky, F. Hartley, N. Sherman, T. Hansen and K. Warner: 7th lnt. Conf. Solid-State Sensors and Actuators (Transducers'93) (1993), Yokohama, Japan, p.50

Google Scholar

[5] H.K. Rockstad, J.K. Reynolds, T.K. Tang, T.W. Kenny, W.J. Kaiser and T.B. Gabrieison: Solid-State Sensors and Actuators A (1996), Vol. 53, p.277

Google Scholar

[6] L. Lin, R.T. Howe, and A.P. Pisano: J. Micro-Electromechanical System, Vol. 7 (1998), p.294

Google Scholar

[7] Y. Zhao, A. P. Brokaw, M. E. Rebeschini, A. M. Leung, G. P. Pucci, and A. Dribinsky: US Patent NO:US 6,795,752 B1. (2004)

Google Scholar

[8] K. M. Liao, R. Chen and B. C. S. Chou : Sensors and Actuators A: Physical, Vol. 130-131(2006), p.282.

Google Scholar

[9] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Wuganuma and M. Esashi : J. Micromech. Microeng. Vol. 6 (1996), p.431.

DOI: 10.1088/0960-1317/6/4/010

Google Scholar

[10] L. C. Spangler and C. J. Kemp : Sens. Actuators, Vol. 54 (1996), p.523.

Google Scholar

[11] U. A. Dauderstadt, P. M. Sarro and S. Middelhoek: Sens. Actuators A, Vol. 66 (1998), p.244.

Google Scholar

[12] R. Dao, D. E. Morgan, H. H. Kries, D. M. Bachelder : United States Patent US 5,581,034. (1996)

Google Scholar

[13] V. Milanovic, E. Bowen, N. Tea, J. S. Suehle, B. Payne, M. E. Zaghloul and M. Gaitan : MEMS Symp. Int. Mech. Eng. Exposition (1998), p.627.

Google Scholar

[14] X. B. Luo, Z. X. Li, Z. Y. Guo and Y. J. Yang : Heat Mass Transfer, Vol. 38 (2002), p.705.

Google Scholar

[15] L. Lin, A. P. Pisano and V. P. Carey : ASME J. Heat Transfer, Vol. 120 (1998), p.735.

Google Scholar

[16] J. H. Tsai and L. Lin : ASME J. Heat Transfer, Vol. 124 (2002), p.375.

Google Scholar