Effect of the Ball Milling Conditions, under Air, on the Preliminary Hydriding Properties of the Mixtures Mg-x Wt% Graphite. Role of Solvent

Article Preview

Abstract:

The effect of wet milling on the hydriding properties of magnesium based mixture has been investigated. To prepare these mixtures, magnesium was ball milled with different weight percent of graphite (5, 10 and 25), at 300 rpm under air, for various duration using a ball miller apparatus Retsch S100 (R=12). Different solvents have been used such as benzene, heptane, styrene, DMSO. The hydriding properties were studied using a manual Sievert-type apparatus, at different temperatures (25°C, 100°C, 150°C and 200°C). The mixture Mg + 5wt% graphite milled during 6 hours in presence of 5mL heptane has shown the best hydriding properties at 150°C. The improvement of these properties has been related to the dielectric constant of the solvent and to the small size of the particles. The different mixtures have been analysed by means of scanning electron microscopy and laser granulometry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-124

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Vose, Metal Hydrides, U.S. Patent 2,944,587. (1961)

Google Scholar

[2] O. Gutfleisch, S. Dal Toè, M. Herrich, A. Handstein, A. Pratt, J. Alloys Compd. 404-406 (2005) 413-416.

DOI: 10.1016/j.jallcom.2004.09.083

Google Scholar

[3] M. Khrussanova, E. Grigorova, J.-L. Bobet, M. Khristov, P. Peshev, J. Alloys Compd. 365 (2004) 308-313.

DOI: 10.1016/s0925-8388(03)00684-4

Google Scholar

[4] N. Hanada, T. Ichikawa, H. Fujii, J. Alloys Compd. 446-447 (2007) 67-71.

Google Scholar

[5] A.D. Rud, A.M. lakhnik, V.G. Ivanchenko, V.N. Uvarov, A.A. Shkola, V.A. Dekhtyarenko, L.I. Ivaschuk, N.I. Kuskova, J. Alloys Compd. 33 (2008) 1310-1316.

DOI: 10.1016/j.ijhydene.2007.12.032

Google Scholar

[6] V. Fuster, G. Urretavizcaya, F.J. Castro, J. Alloys Compd. 481 (2009) 673-680.

Google Scholar

[7] Y. Chen, J.S. Williams, J. Alloys Compd. 217 (1995) 181-184.

Google Scholar

[8] Z.G. Huang, Z.P. Guo, A. Calka, D. Wexler, H.K. Liu, J. Alloys Compd. 427 (2007) 94-100.

Google Scholar

[9] K. Shindo, T. Kondo, M. Arakawa, Y. Sakurai, J. Alloys Compd. 359 (2003) 267-271.

Google Scholar

[10] S. Orimo, G. Majer, T. Fukunaga, A. Zuttel, L. Schlapbach, H. Fujii, Appl. Phys. Lett. 75 (1999) 3093.

DOI: 10.1063/1.125241

Google Scholar

[11] S. Bouaricha, J.P. Dodelet, D. Guay, J. Huot, R. Schulz, J. Alloys Compd. 325 (2001) 245-251.

DOI: 10.1016/s0925-8388(01)01390-1

Google Scholar

[12] H. Imamura, K. Masanari, M. Kusuhara, H. Katsumoto, T. Sumi, Y. Sakata, J. Alloys Compd. 386 (2005) 211-216.

DOI: 10.1016/j.jallcom.2004.04.145

Google Scholar

[13] A. Montone, J. Grbović, A. Bassetti, L. Mirenghi, P. Rotolo, E. Bonetti, L. Pasquini, M. Vittori Antisari, Int. J. Hydrogen Energy 31 (2006) 2088-2096.

DOI: 10.1016/j.ijhydene.2006.01.020

Google Scholar

[14] M.R. Reda, J. Alloys Compd. 480 (2009) 238-240.

Google Scholar

[15] A. Léon, E.J. Knystautas, J. Huot, R. Schulz, J. Alloys Compd. 345 (2002) 158-166.

Google Scholar

[16] J-C. Rietsch, R. Gadiou, C-V. Guterl, J. Dentzer, J.Alloys Compd. 491 (2010) L15-L19.

DOI: 10.1016/j.jallcom.2009.10.193

Google Scholar

[17] A. Takasaki, Y. Furuya, M. Katayama, J. Alloys Compd. 446-447 (2007) 110-113.

Google Scholar