[1]
J. Lu, M.P. Rao, N.C. MacDonald , D. Khang , T. J. Webster, Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features, Acta Biomaterialia. 4 (2008) 192–201.
DOI: 10.1016/j.actbio.2007.07.008
Google Scholar
[2]
G. Mani, M. D. Feldman, D. Patel, C. Agrawal, Coronary Stents: A Materials Perspective, Biomaterials. 28 (2007) 1689–1710.
DOI: 10.1016/j.biomaterials.2006.11.042
Google Scholar
[3]
D. Stoeckel, C. Bonsignore, S. Duda, A survey of stent designs, Minim Invasiv Ther. 11 (2002) 137-47.
Google Scholar
[4]
W. van Oeveren, Polyethylene and silicon carbide coated steel promote less complement activation and platelet or leukocyte adhesion than medical steel and silicone rubber material, Progress in Biomedical Research. 6 (2001) 195-201.
Google Scholar
[5]
J.C. Palmaz, Intravascular stents: Tissue-stent interactions and design considerations, AJR Am J Roentgenol. 169 (1993) 613-8.
Google Scholar
[6]
M.D. Ball, R.Sherlock , T. Glynn, Cell interactions with laser-modified polymer surfaces, J Mater Sci-Mater M. 15 (2004) 447-9.
Google Scholar
[7]
M. Stover, M. Renke-Gluszko, T. Schratzenstaller, J. Will, N. Klink, B. Behnisch et al., Microstructuring of stainless steel implants by electrochemical etching, Journal of Materials Science. 41 (2006) 5569-75.
DOI: 10.1007/s10853-006-0257-7
Google Scholar
[8]
R.J. Sherlock, D.N. Bhogal, M. Ball, T.J. Glynn, Cell growth on surface modified medical polymers, Proc SPIE. 4876 (2003) 11-7.
DOI: 10.1117/12.463640
Google Scholar
[9]
C.L. Chu, C.Y. Chung, P.K. Chu, Surface oxidation of niti shape memory alloy in a boiling aqueous solution containing hydrogen peroxide, Materials Science and Engineering A -Structural Materials Properties Microstructure and Processing. 417 (2006) 104-9.
DOI: 10.1016/j.msea.2005.11.010
Google Scholar
[10]
T.J. Webster, E.L. Hellenmeyer, Increased osteoblast functions on theta + delta nanofiber alumina, Biomaterials. 26 (2005) 953-60.
DOI: 10.1016/j.biomaterials.2004.03.040
Google Scholar
[11]
M. Veith, C. Petersen, O.C. Aktas, W. Metzger, M. Oberringer, T. Pohlemann, M. Müller, S.Gerbes, Chemical vapour deposition of aluminium based micro- and nanostructured surfaces for biological applications, Materials Letters. 62 (2008) 3842–3845.
DOI: 10.1016/j.matlet.2008.04.087
Google Scholar
[12]
M. Veith, S. Faber, R. Hempelmann, S. Janssen, J. Prewo, H. Eckerlebe, Synthesis and microstructure of nanostructured Al/Al2O3(h)-composite, Journal of Materials Science. 31 (1996) 2009-17.
DOI: 10.1007/bf00356620
Google Scholar
[13]
Information on http://probes.invitrogen.com/media/pis/mp00354.pdf Copyright 2006, Molecular Probes
Google Scholar
[14]
J.Lee, B.S. Kang, B. Hicks, T. F. Chancellor, Jr., B. H. Chu, H. Wang, B.G. Keselowsky, F. Ren, T. P. Lele, The control of cell adhesion and viability by zinc oxide nanorods, Biomaterials. 29 (2008) 3743–3749.
DOI: 10.1016/j.biomaterials.2008.05.029
Google Scholar
[15]
P. Drees, A. Eckardt, R.E. Gay, S. Gay, L.C. Huber, Molecular pathways in aseptic loosening of orthopaedic, endoprosthesis Biomed. Tech. (Berl.). 53 (2008) 93–103.
DOI: 10.1515/bmt.2008.021
Google Scholar