[1]
B. S. Lee and S. Kang , Low Temperature Processing of B4C – Al Composites Via Infiltration Technique, , Material Chemistry and Physics, Vol. 67 (2001), p.249 –255.
DOI: 10.1016/s0254-0584(00)00446-6
Google Scholar
[2]
Ke- feng Cai and Ce- Wen Nan, The Effect of Silicon Addition on Thermoelectric Properties of a B4C Ceramic , Materials Science and Eng., B67 (1999), pp.102-107.
DOI: 10.1016/s0921-5107(99)00220-2
Google Scholar
[3]
L. Levin, N. Frage, and M. P. Daniel, A Novel Approach to the Preparation of B4C – Based Cermets, Int. J. Of Refractory of Hard Materials, Vol. 18 (2000), p.131 –135.
DOI: 10.1016/s0263-4368(00)00012-3
Google Scholar
[4]
C.C. Philip, Ceramic Composites Containing Spinel Silicon Carbide and Boron Carbide, European Patent, No. 92108592. 4 , (1999).
Google Scholar
[5]
G. Magnani, G. Beltrani, and G. Loris, Pressurless Sintering and Properties of α SiC – B4C Composites, , J. of the Eur. Ceram. Soc., Vol. 21 (2001), pp.633-638.
Google Scholar
[6]
Gerald Q. Weaver, Sintered High Density Boron Carbide, US Patent No. 4320204, (1982).
Google Scholar
[7]
L. S. Sigl, Processing and Mechanical Properties of Boron Carbide Sintered With TiC, J. of the Eur. Ceram. Soc., Vol. 18 (1998), p.1521 –1529.
DOI: 10.1016/s0955-2219(98)00071-5
Google Scholar
[8]
Karl A. Schwetz, Mechanical Properties of Injection Molded B4C- C Ceramics, Journal of Solid State Chemistry, Vol. 133 (1997), pp.66-76.
DOI: 10.1006/jssc.1997.7316
Google Scholar
[9]
Ke- feng Cai, Ce- Wen Nan, The Influence of W2B5 Addition on Microstructure and Thermoelectric Properties of B4C Ceramic, Ceramics International , Vol. 26 (2000), pp.523-527.
DOI: 10.1016/s0272-8842(99)00089-9
Google Scholar
[10]
S. Yamada, K, Hirao, and S. Sakaguehi, Microstructure and Mechanical Properties of B4C- CrB2 Ceramics, , Key Eng. Materials, Vol. 206 –213 (2002), pp.811-814.
Google Scholar
[11]
S. Prochozka, Sintering Boron Carbide Containing Beryllium Carbide, , US Patent No. 4, 005, 235, (1997).
Google Scholar
[12]
T. Graziani and A. Bellosi, Production and Characteristics of B4C/TiB2 Composites, Key Engineering Materials, Vol 104-107 (1995), pp.125-132.
Google Scholar
[13]
V.V. Shorokhod jr., M.D. Vlajic, and V.D. Krstic, Pressureless Sintering of B4C – TiB2 Ceramic Composites, Materials Science Forum, , Vol. 282-283 (1998), pp.219-224.
Google Scholar
[14]
Arne K. Kundsen and W. Rafaniello, Titanium Diboride / Boron Carbide Composites with High Hardness and Toughness, US Patent No. 4, 957, 884, (1990).
Google Scholar
[15]
H. Itoh, K. Sugiura , and I. Ihara, Preparation of TiB2- B4C Composites by Pressure Sintering, Journal of Alloys and compounds , 232 (1996), pp.186-191.
DOI: 10.1016/0925-8388(95)01972-3
Google Scholar
[16]
S. Tuffe, J. Dubors, and G. Barbier, Densification, Microstructure, and Mechanical Properties of TiB2 – B4C Based Composites, Int. J. of Refractory Metals and Hard Materials, Vol. 14 (1996), p.305 –310.
DOI: 10.1016/s0263-4368(96)00012-1
Google Scholar
[17]
K. Niihara, Process For Forming a Sintered Composite Boron Carbide Body, , US Patent, No. 5, 637, 269. (1996).
Google Scholar
[18]
Hae- Won kim, Yonng – Hay Koh, and Hyon – Ee kim, Densification and Mechanical Properties of B4C with Al2O3 as a Sintering Aids, J. Am. Ceram. Soc., Vol. 83, No. 11 (2000), pp.2363-65.
Google Scholar
[19]
A. Goldstein, Y. Geffen, and A. Goldenberg, Boron Carbide- Zirconium Boride In Situ Composites by the Reactive Pressureless Sintering of Boron Carbide-Zirconia Mixtures, J. Am. Ceram. Soc, Vol 84, No. 3 (2001), pp.642-44.
DOI: 10.1111/j.1151-2916.2001.tb00714.x
Google Scholar
[20]
http: /www. boroncarbidecoating. com.
Google Scholar
[21]
http: /findarticles. com/p/articles/mi_m3101/is_n8_v61/ai_7007114.
Google Scholar
[22]
http: /www. tekmat. co. uk/tekbide. htm.
Google Scholar
[23]
http: /gtresearchnews. gatech. edu/newsrelease/boron-carbide. htm.
Google Scholar