Defect-Related Photoluminescence from SiO2 Thin Films by Si-Ge Ions Doped

Article Preview

Abstract:

Si and Ge ions are implanted into SiO2 thin films, subsequently the annealing treatment are carried out. The samples exhibit photoluminescence (PL) peaks at 400, 470, 550 and 780 nm. With the annealing temperature increasing, the intensity of 400-470 nm PL band increases remarkably. After oxidation annealing treatment, the intensity of 400-470 nm PL band decreases, and that of 550 nm and 780 nm PL peaks rises. Combing with the results of X-ray photoelectron spectroscopy(XPS), X-ray diffraction (XRD) and PL measurement, we propose that the PL peaks at 400 nm, 470 nm, 550 nm and 780 nm originate from ≡Ge−Si≡ center, ≡Si−Si≡ center, SPR center and GeO center, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 328-330)

Pages:

1153-1156

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Bianucci, F. C. Lenz, J. G. C. Veinot and A. Meldrum: Physica E., Vol. 41(2009)No. 6, p.1107.

Google Scholar

[2] K. Zhong, Z. S. Xiao, G. A. Cheng and X. Q. Cheng: Chin. Opt. Lett., Vol. 7(2009) No. 9, p.1671.

Google Scholar

[3] F. Zhu, Z. S. Xiao, L. Yan, F. Zhang, K. Zhong and G. A. Cheng: Nucl. Instrum. Methods Phys. Res. B, Vol. 267(2009) No. 18, p.3100.

Google Scholar

[4] Z. Q. Xie, J. Zhu, M. Zhang, Y. Y. Zhao and M. Lu: Appl. Surf. Sci., Vol. 255(2009) No. 36, p.3833.

Google Scholar

[5] M. Jivanescu, A. Stesmans and M. Zacharias: Physica E, Vol. 41(2009) No. 6, p.947.

Google Scholar

[6] U. S. Sias, M. Behar, H. Boudinov and E. C. Moreira: Nucl. Instrum. Methods Phys. Res. B, Vol. 257(2007) No. 1-2, p.6.

Google Scholar

[7] T. Nicolae: Appl. Surf. Sci.,  Vol. 253(2006) No. 1, p.376.

Google Scholar

[8] T. Mchedlidze, T. Arguirov, S. K. Arguirova and M. Kittler: Thin Solid Films, Vol. 516(2008) No. 20, p.6800.

DOI: 10.1016/j.tsf.2007.12.083

Google Scholar

[9] F. L. Bregolin, M. Behar, U. S. Sias and E. C. Moreir: Nucl. Instrum. Methods Phys. Res. B, Vol. 267(2009) No. 8-9, p.1321.

Google Scholar

[10] J. Takemoto, K. Moritani, I. Takagi, M. Akiyoshi and H. J. Moriyama: Nucl. Mater.,  Vol. 374 (2008) No. 5, p.293.

Google Scholar

[11] H. Q. Yang, X. Yao and D. Huang: Opt. Mater., Vol. 29(2007) No. 7, p.747.

Google Scholar

[12] G. R. Lin, C. J. Lin and C. K. Lin: J. Appl. Phys., Vol. 97(2005) No. 9, p.94306.

Google Scholar

[13] L. Rebohle, J. V. Borany, R. A. Yankov and W. Skorupa: Appl. Phys. Lett., Vol. 71(1997) No. 19, p.2809.

Google Scholar

[14] K. Zhong, Z. S. Xiao, X. Q. Cheng and G. A. Cheng: Nucl. Instrum. Methods Phys. Res. B, Vol. 267(2009) No. 18, p.3100.

Google Scholar

[15] Y. Sakurai, K. Nagasawa: J. Appl. Phys., Vol. 86(1999) No. 3, p.1377.

Google Scholar

[16] J. K. Shen, X. L. Wu and R. K. Yuan: Appl. Phys. Lett., Vol. 77(2000) No. 20, p.3134.

Google Scholar