Synthesis and Luminescent Behavior of Mn(1-X)S:AX/ZnS Core/Shell Nanocrystals

Article Preview

Abstract:

Mn(1-X)S:AX/ZnS (A: Er, Dy) nanocrystals were synthesized by chemical precipitation method. X-ray diffraction analysis show that Mn(1-X)S:AX/ZnS nanocrystals were zincblende structure. The high-resolution transmission electron microscope images indicated that Mn(1-X)S:AX/ZnS nanocrystals show a spherical shape, and their average grain size is about 4 nm. Photoluminescence spectra of Mn(1-X)S:AX/ZnS nanocrystals revealed that there existed several major emission bands, ~417 nm, ~509 nm, ~580 nm, ~617nm and ~680 nm. Mn(1-X)S:AX/ZnS nanocrystals exhibited enhanced luminescence properties compared with the pure Mn(1-X)S:AX nanocrystals. The enhanced photoluminescence properties of Mn(1-X)S:AX/ZnS nanocrystals should be attributed to the effective suppression of nonradiative recombination by the surface-passivation layer.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 335-336)

Pages:

669-673

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. R. Jung, D. Y. Son, J. M. Kim, C. J. Kim, B. Park: Appl. Phys. Lett. Vol. 93(2008), p.163118.

Google Scholar

[2] V. L. Colvin, M. C. Schlamp, A. P. Alivisatos: Nature. Vol. 370 (1994), p.354.

Google Scholar

[3] V. I. Klimov: Nature. Vol. 47 (2007), p.441.

Google Scholar

[4] X. Michalet et al., Science. Vol. 307 (2005), p.538.

Google Scholar

[5] I. Gur, N. A. Fromer, M. L. Geier, A. P. Alivisatos: Science. Vol. 310(2005), p.462.

Google Scholar

[6] A.P. Allivisatos: Science. Vol. 271 (1996), p.933.

Google Scholar

[7] R. Tappero, P. D'Arco, A. Lichanot: Chem. Phys. Lett. Vol. 83 (1997), p.273.

Google Scholar

[8] C. Gumus, C. Ulutus, Y. Ufuktepe: Opt. Mater. Vol. 29(2007), p.1183.

Google Scholar

[9] L. Wang, S. Sivananthan, R. Sporken and R. Caudano, Phys. Rev. B. Vol. 54 (1996), p.2718.

Google Scholar

[10] S. Wang, K. Li, R. Zhai, H. Wang, Y. Hou, H. Yan: Mater. Chem. Phys. Vol. 91 (2005), p.298.

Google Scholar

[11] D.V. Martyshkin, C. Kim, I.S. Moskalev, V.V. Fedorov, S.B. Mirov, IEEE. (2008).

Google Scholar

[12] Y. J. Wang, C. X. Wu, M. Z. Chen, M. C. Huang: J. Appl. Phys. Vol. 93 (2003 p.9625.

Google Scholar

[13] L. D. Sun, H. Chun, C. H. Liu, C. S. Liao, D. Li, J. Q. Yu: J.Alloys.Compd. Vol. 234 (1998), p.275.

Google Scholar

[14] I. Gallardo, K. Hoffmann, J. W. Keto: Appl. Phys. A. Vol. 94(2009), p.65.

Google Scholar

[15] B. Blackman, D. Battaglia, X. G Peng: Chem. Mater. Vol. 20 (2008), p.4847.

Google Scholar

[16] W. G. Becker, A. J. Bard, J. Phys. Chem. Vol. 87, 4888 (1983)

Google Scholar

[17] Z. D. Lou, A. N. Georgobiani, Z. Xu, C.X. Xu, F.Teng, L.Yu: Chin. Sci. Bull. Vol. 43 (1998), p.518

Google Scholar

[18] X. F. Liu, X. Y. Ni, J. Wang, X. H. Yu: Nanotechnology. Vol. 19 (2008), p.485602.

Google Scholar

[19] N. Taghavinia, H. Makino, T. Yao: Appl. Phys. Lett. Vol. 83 (2003), p.4616.

Google Scholar

[20] G. Bhaskar Kumar, S. Buddhudu: Physica B. Vol. 403 (2008), p.4164.

Google Scholar