Structural and Optoelectrical Properties of Aluminum-Doped Zinc Oxide Thin Films for Organic Photovoltaic Cells

Article Preview

Abstract:

Thin films of transparent conducting aluminum-doped zinc oxide (ZnO:Al) were grown by rf magnetron sputtering technique using a sintered ceramic target of ZnAl2O4. The microstructure and optoelectrical properties of the deposited films were characterized wiyh XRD, four-point probe and spectrophotometer. The results show that the polycrystalline ZnO:Al films consist of the hexagonal crystal structures with c-axis as the preferred growth orientation normal to the substrate, and that the substrate temperature significantly affects the crystal structures and optoelectrical properties of the thin films. The ZnO:Al films deposited at the substrate temperature of 670 K has the relatively well crystallinity, the largest crystal grain, the highest transmittance and the highest figure of merit.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

532-535

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.W. Tang: Appl. Phys. Lett. Vol. 48 (1986), p.183

Google Scholar

[2] A.J. Breeze, Z. Schlesinger, S.A. Carter and P.J. Brock: Phys. Rev. B Vol. 64 (2001), p.125205

Google Scholar

[3] X. Li and D. Tang: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 28 (2009), p.9

Google Scholar

[4] M. Berggren and O. Inganäs: Science Vol. 267 (1995), p.1479

Google Scholar

[5] X. Li and Y. Hu: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 29 (2010), p.6

Google Scholar

[6] Z. Zhong: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 28 (2009), p.73

Google Scholar

[7] J.H. Burroughes, D.D.C. Bradley and A.R. Brown: Nature Vol. 347 (1990), p.539

Google Scholar

[8] S. Chen, S. Wei, X. He and F. Sun: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 28 (2009), p.43

Google Scholar

[9] J. Hu and R.G. Gordon: J. Appl. Phys. Vol. 71 (1992), p.880

Google Scholar

[10] Z. Zhong, J. Gu, X. He and F. Sun: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 28 (2009), p.33

Google Scholar

[11] T. Minami, H. Sato and S. Takata: Jpn. J. Appl. Phys. Vol. 31 (1992), p. L1106

Google Scholar

[12] F. Sun and S. Hui: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 28 (2009), p.10

Google Scholar

[13] Y.S. Kim and W.P. Tai: Appl. Surf. Sci. Vol. 253 (2007), p.4911

Google Scholar

[14] M. Krunks and E. Mellikov: Thin Solid Films Vol. 270 (1995), p.33

Google Scholar

[15] J. Mass, P. Bhattacharya and R.S. Katiyar: Mater. Sci. Eng. B Vol. 103 (2003), p.9

Google Scholar

[16] D. Chen, Q. Li and J. Huang: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 29 (2010), p.14

Google Scholar

[17] J.F. Chang and M.H. Hon: Thin Solid Films Vol. 386 (2001), p.79

Google Scholar

[18] J. Gu, Z. Zhong, X. He and F. Sun: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 28 (2009), p.30

Google Scholar

[19] S.S. Lin and J.L. Huang: Surf. Coat. Technol. Vol. 185 (2004), p.222

Google Scholar

[20] Z. Zhong, J. Gu, X. He and B. Chen: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 30 (2011), p.64

Google Scholar

[21] G. Haacke: J. Appl. Phys. Vol. 47 (1976), p.4086

Google Scholar