Potential Role of Calcium Lon in Mediating the Response of Escherichia Coli to Audible Sound Stimulation

Article Preview

Abstract:

Previous studies from our laboratory have indicated that audible sound field stimulation can significantly affect E.coli growth and metabolic action, which can enhance or inhibit the growth of Escherichia coli (E.coli), and the effects of sound field on E.coli growth depended greatly on the intensity and frequency of sound field. However, very little efforts have been put forth in studying the potential mechanism of bacterial cells responses to audible sound stimulation. In this paper, the potential role of calcium signaling in mediating the response of E.coli to audible sound stimulation was firstly reported. We found that audible sound wave stimulation could evidently enhance total intracellular Ca2+ content. And the lack of calcium ion in medium significantly alleviated audible sound wave biological effects. Moreover, by adding appropriate level of calcium chloride to the LB medium contained 1.2 mM EDTA, the promotion effect of audible sound wave to E.coli growth was gradually resumed. On the basis of these findings, we speculate that calcium signaling may play an important role in mediating the response of E.coli to audible sound stimulation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

1079-1086

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Norris, M. Chen, M. Goldberg, J. Voskuil, G. McGurk, I. B. Holland, Calcium in bacteria: a solution to which problem? Mol. Microbiol. Vol. 5, Apr. 1991, pp.775-778.

DOI: 10.1111/j.1365-2958.1991.tb00748.x

Google Scholar

[2] C. Dominguez, Calcium signalling in bacteria, Mol. Microbiol. Vol. 54, Oct. 2004, p.291–297.

Google Scholar

[3] L. S. Tisa and J. Adler, Calcium ions are involved in Escherichia coli chemotaxis. Proc. Natl. Acad. Sci. vol. 89, Dec. 1992, p.11804–11808.

DOI: 10.1073/pnas.89.24.11804

Google Scholar

[4] M. L. Herbaud, A. Guiseppi, F. Denizot, J. Haiech and M. C. Kilhoffer, Calcium signalling in Bacillus subtilis, Biochim. Biophys. Acta vol. 1448, Dec. 1998, p.212–226.

DOI: 10.1016/s0167-4889(98)00145-1

Google Scholar

[5] X. C. Yu, and W. Margolin, Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBO J. vol. 16, Sep. 1997, p.5455–5463.

DOI: 10.1093/emboj/16.17.5455

Google Scholar

[6] V. Norris, S. J. Seror, S. Casaregola and I. B. Holland, A single calcium flux triggers chromosome replication, segregation and septation in bacteria: a model, J. Theor. Biol. Vol. 134, Oct. 1988, p.341–350.

DOI: 10.1016/s0022-5193(88)80065-1

Google Scholar

[7] D. Laoudj, C.L. Andersen, A. Bras, M. Goldberg, A. Jacq and I.B. Holland, EGTA induces the synthesis in E. coli of three proteins that cross react with calmodulin antibodies, Mol. Microbiol. Vol. 13, Aug. 1994, p.445–457.

DOI: 10.1111/j.1365-2958.1994.tb00439.x

Google Scholar

[8] I. B. Holland, H. E. Jones, A. K. Campbell and A. Jacq, An assessment of the role of intracellular free Ca2+ in E. coli, Biochimie, vol. 81, Sep. 1999, p.901–907.

DOI: 10.1016/s0300-9084(99)00205-9

Google Scholar

[9] J. Michiels, C. Xi, J. Verhaert, J. Vanderleyden, The functions of Ca(2+) in bacteria: a role for EF-hand proteins? Trends Microbiol. Vol. 10, Feb. 2002, pp.87-93.

DOI: 10.1016/s0966-842x(01)02284-3

Google Scholar

[10] T. Onoda, J. Enokizono, H. Kaya, A. Oshima, P. Freestone, V. Norris, Effects of calcium and calcium chelators on growth and morphology of Escherichia coli L-form NC-7. J Bacteriol., vol. 182, Mar. 2000, pp.1419-22.

DOI: 10.1128/jb.182.5.1419-1422.2000

Google Scholar

[11] J.H. Miller, A Short Course in Bacterial Genetics, Laboratory Press, Cold spring harbor, (1992).

Google Scholar

[12] M. Sergio, K. Amar and P. Nurse, Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol., Vol, 194, 1991, p.800~801.

Google Scholar

[13] E. Ackerman., Resonances of biological cells at audible frequencies. Bulletin of Mathematical Biology, vol. 13, 1951, pp.93-106.

DOI: 10.1007/bf02478356

Google Scholar

[14] B. C. Wang, H. C. Zhao, Y. Y. Liu, Y. Jia, A. Sakanishi, The effects of alternative stress on the cell membrane deformability of chrysanthemum callus cells, Colloids Surf B, vol. 20, Apr. 2001, pp.321-325.

DOI: 10.1016/s0927-7765(00)00181-8

Google Scholar

[15] H. C. Zhao, B. C. Wang, S. X. Cai, B. S. Xi, Effect of sound stimulation on the lipid physical states and metabolism of plasma membrane from Chrysanthemum callus, Acta Botanica Sinica, vol. 44, Jun. 2002, pp.799-803.

Google Scholar

[16] H. C. Zhao, J. Wu, B. S. Xi, B. C. Wang, Effects of sound-wave stimulation on the secondary structure of plasma membrane protein of tobacco cells, Colloids Surf. B. vol. 25, May 2002, pp.29-32.

DOI: 10.1016/s0927-7765(01)00294-6

Google Scholar

[17] G. Apodaca, Modulation of membrane traffic by mechanical stimuli, Am J Physiol Renal Physiol, vol. 282, Feb. 2002, pp.179-190.

Google Scholar

[18] Y. Jia, B. C. Wang, X. J. Wang, D. H. Wang, C. R. Duan, Y. Toyama, A. Sakanishi,. Effect of sound wave on the metabolism of chrysanthemum roots, Colloids Surf. B. vol. 29, Jun. 2003, pp.115-118.

DOI: 10.1016/s0927-7765(02)00155-8

Google Scholar

[19] K.L. Sun and B.S. Xi, The effects of alternative stress on the thermodynamic properties of cultured tobacco cells. Acta Biophys. Sin. Vol. 15, May 1999, p.579–584 (in Chinese).

Google Scholar

[20] Z.W. Sheng, The secondary structure changes of plant cell wall proteins aroused by strong sound waves using FT-IR. Acta Photon. Sin. Vol. 18, Jun. 1999, p.600–602 (in Chinese).

Google Scholar

[21] H. C. Zhao, J. Wu, L. Zheng, T. Zhu, B. S. Xi, B. C. Wang, Sh. X Cai and Y. N. Wang, Effect of sound stimulation on Dendranthema morifolium callus growth, Colloids Surf B, vol. 29, Jun. 2003, pp.143-147.

DOI: 10.1016/s0927-7765(02)00184-4

Google Scholar

[22] C. A. Mitchell, P. N. Myers, Mechanical stress regulation of plant growth and development, Hortic Rev, vol. 17, 1995, pp.1-42.

Google Scholar

[23] G. H. Altman, R. L. Horan, I. Martin, J. Farhadi, P. R. Stark, V. Volloch, J. C. Richmond, G. Vunjak-Novakovic, D.L. Kaplan, Cell differentiation by mechanical stress, The FASEB Journal. Vol. 16, Feb. 2001, pp.270-272.

DOI: 10.1096/fj.01-0656fje

Google Scholar

[24] M. Chiquet, Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol, vol. 18, Oct. 1999pp. 417-26.

DOI: 10.1016/s0945-053x(99)00039-6

Google Scholar

[25] J. W. Walley, S. Coughlan, M. E. Hudson, M. F. Covington, R. Kaspi, G. Banu, S. L. Harmer, K. Dehesh, Mechanical stress induces biotic and abiotic stress responses via a novel cis-element, PLoS Genet. Vol. 3, Oct. 2007, pp.1800-1812.

DOI: 10.1371/journal.pgen.0030172.eor

Google Scholar

[26] M. C. Trombe, V. Rieux, and F. Baille, Mutations which alter the kinetics of calcium transport alter the regulation of competence in Streptococcus pneumoniae. J. Bacteriol. Vol. 176, Apr. 1994, p.1992–(1996).

DOI: 10.1128/jb.176.7.1992-1996.1994

Google Scholar

[27] S. C. Straley, G. V. Plano, E. Skrzypek, P. L. Haddix, K. A. Fields, Regulation by Ca2+ in the Yersinia low-Ca2+ response. Mol. Microbiol. Vol. 8, Jun. 1993, p.1005–1010.

DOI: 10.1111/j.1365-2958.1993.tb01644.x

Google Scholar

[28] L.S. Tisa, and J. Adler, Cytoplasmic free-Ca2+ level rises with repellents and falls with attractans in Escherichia coli chemotaxis. Proc. Natl. Acad. Sci. vol. 92, Nov. 1995, p.10777–10781.

DOI: 10.1073/pnas.92.23.10777

Google Scholar

[29] B. C. Wang, L. C. Shi, J. Zhou, Y. Y Yu, Y. H Yang, The influence of Ca2+ on the proliferation of S. cerevisiae and low ultrasonic on the concentration of Ca2+ in the S. cerevisiae cells. Colloids Surf B, vol. 32, Oct. 2003, p.35 – 42.

DOI: 10.1016/s0927-7765(03)00129-2

Google Scholar

[30] M. J. Sullivan, R. V. Sharma, R. E. Wachtel, M. W. Chapleau, L. J. Waite, R. C. Bhalla, F. M. Abboud, Non-voltage-gated Ca2+ influx through mechanosensitive ion channels in aortic baroreceptor neurons. Circ Res. Vol. 80, Jun. 1997, pp.861-867.

DOI: 10.1161/01.res.80.6.861

Google Scholar

[31] S. Sukharev, Mechanosensitive channels in bacteria as membrane tension reporters. FASEB J, vol. 13 Suppl, 1999, pp.55-61.

DOI: 10.1096/fasebj.13.9001.s55

Google Scholar