[1]
F. Hasan, A.A. Shah, and A. Hameed, Industrial applications of Microbial lipases, Enzyme Microb. Technol., vol. 39, no. 2, pp.235-251, June (2006).
DOI: 10.1016/j.enzmictec.2005.10.016
Google Scholar
[2]
A. Zakas and D. R Dodds, Application of biocatalysis and biotransformation to the synthesis of pharmaceuticals, Drug Disc. Today , vol. 2, no. 12, pp.513-531, December (1997).
Google Scholar
[3]
A.L. Serdakowsli and J.J. Dordick, Enzyme activation for organic solvents made easy, Trends Biotechnol., vol. 26, no. 1, pp.48-54, January (2008).
DOI: 10.1016/j.tibtech.2007.10.007
Google Scholar
[4]
K. Martinek, A.V. Levashov, Y.L. Khmelnitsky, N. L Klyachko, and I.V. Berezin, Colloidal solution of water in organic solvents: a microheterogeneous medium for enzymatic reactions, Science, vol. 218, no. 4575, pp.889-891, November (1982).
DOI: 10.1126/science.6753152
Google Scholar
[5]
T. Mori and Y.A. Okahata, A variety of lipids-coated glycoside Hydrolases as effective glycosyl transfer catalysts in homogeneous organic solvents, Tetrahedron Lett., vol. 38, no. 11, pp.1971-1974, March (1997).
DOI: 10.1016/s0040-4039(97)00251-7
Google Scholar
[6]
S. Noda, N. Kamiya, M. Goto, and F.T. Nakashio, Enzymatic Polymerization catalyzed by surfactant-coated lipase in organic media, Biotechnol. Lett., vol. 19, no. 4, pp.307-309, April (1997).
DOI: 10.1007/bf00127899
Google Scholar
[7]
J.P. Lindsay, D.S. Clark, and J.S. Dordick, Combinational formulation of biocatalyst preparations for increased activity in organic solvents: salt activation of penicillin amidase, Biotechnol. Bioeng., vol. 85, no. 5, pp.553-560, March (2004).
DOI: 10.1002/bit.20002
Google Scholar
[8]
A.O. Maganusson, J.C. Rotticci-Muder, A. Santagostino, and Hult K., Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B, ChemBioChem., vol. 6, no. 6, pp.1051-1056, June (2005).
DOI: 10.1002/cbic.200400410
Google Scholar
[9]
T.S. Wong, F.H. Arnold, and U. Schwaneberg, Laboratory evolution of cytochrome P450 BM-3 monooxygenase for organic cosolvent, Biotechnol. Bioeng., vol. 85, no. 5, pp.351-358, March (2004).
DOI: 10.1002/bit.10896
Google Scholar
[10]
H. Ogino, K. Miyamoto, and H. Ishikawa, Organic-solvent-tolerant bacterium which secretes organic-solvent-stable lipolytic enzyme, Appl. Environ. Microbiol., vol. 60, no. 10, pp.3884-3886, October (1994).
DOI: 10.1128/aem.60.10.3884-3886.1994
Google Scholar
[11]
C.J. Hun, R.N.Z.A. Rahaman, and A.B. Salleh, A newly isolated organic solvent tolerant Bacillus sphaericus 205y producing organic solvent-stable lipase, Biochem. Eng. J., vol. 15, no. 2, pp.147-151, August (2003).
DOI: 10.1016/s1369-703x(02)00185-7
Google Scholar
[12]
L.L. Zhao, J.H. Xu, J. Zhao, J. Pang, and Z.L. Wang , Biochemical properties and potential applications of an organic solvent tolerant lipase isolated from Serratia marcescens ECU1010, Process Biochem., vol. 43, no. 6, pp.626-633, June (2008).
DOI: 10.1016/j.procbio.2008.01.023
Google Scholar
[13]
J.G. Holt, et al., Bergey's Maunal of Determinative Bacteriology, 9th ed., Baltimore: Williams and Wilkins, (1994).
Google Scholar
[14]
W.G. Weisburg, S.M. Barns, D.A. Pelletier, and D.J. Lane, 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., vol. 173, no. 2, pp.697-703, January (1991).
DOI: 10.1128/jb.173.2.697-703.1991
Google Scholar
[15]
A.M. Klibanov, Enzymes that work in organic solvents, ChemTech ., vol. 16, no. 2, pp.354-359, (1986).
Google Scholar
[16]
A. Pratuangdejkul and S. Dharmsthiti, Purification and characterization of lipase from psychrophilic Acinetobacter calcoaceticus LP009, Microbiol. Res., vol. 55, no. 2, pp.95-100, July (2000).
DOI: 10.1016/s0944-5013(00)80043-9
Google Scholar
[17]
V. Dandavate, J. Jinjala, H. Keharia, and D. Madamwar, Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis, Bioresour. Technol., vol. 100, no. 13, pp.3374-3381, July (2009).
DOI: 10.1016/j.biortech.2009.02.011
Google Scholar
[18]
H. Ogino, et al., Purification and characterization of organic solvent-stable lipase from organic-solvent-tolerant Psedomonas aeruginosa LST-03, Biosci. Bioeng ., vol. 89, no. 5, pp.451-457, (2000).
DOI: 10.1016/s1389-1723(00)89095-7
Google Scholar
[19]
R. Sharma, S.K. Soni, R.M. Vohra, R.S. Jolly, and J.K. Gupta, Production of extracellular alkaline lipase from a Bacillus sp. RSJ1 and its application in ester hydrolysis, Ind. J. Microbiol., vol. 42, no. 1, pp.4-54, (2002).
Google Scholar
[20]
F. Pabai, S. Kermasha, and A. Morin , Use of continuous culture to screen for lipae-producing microorganisms and interesterification of butterfly by lipase isolates, Can. J. Microbiol., vol. 42, no. 5, pp.446-452, May (1996).
DOI: 10.1139/m96-061
Google Scholar
[21]
H. Dong, S. Gao, S. Han, and S. Cao, Purification and characterization of a Pseudomonas sp. lipase and its properties in non-aqueous medium, Appl. Microbiol. Biotechnol. vol. 30, no. 3, pp.251-256, December (1999).
Google Scholar
[22]
P. Rathi, P.K. Saxena, and R. Gupta, A novel alkaline lipase from Burkholderia cepacia for detergent formulation, Process Biochem., vol. 37, no. 2, pp.187-192, October (2001).
DOI: 10.1016/s0032-9592(01)00200-x
Google Scholar
[23]
R. Gupta, N. Gupta, and P.F. Rathi, Bacterial lipases: an overview of production, purification and biochemical properties, Appl. Microbiol. Biotechnol. vol. 64, no. 4, pp.251-256, June (2004).
DOI: 10.1007/s00253-004-1568-8
Google Scholar
[24]
M. Sugihara, T. Tani, and Y. Tominaga, Purification and characterization of a novel thermostable lipase from Bacillus, J. Biochem., vol. 37, no. 2, pp.187-192, October (2001).
Google Scholar
[25]
S.E. Barbaro, J.T. Trevors, and W.E. Inniss , Effects of low temperature, cold shock, and various carbon sources on esterase and lipases activity and exopolysaccharide production by a psychrotrophic Acinetobacter sp. , Can. J. Microbiol. vol. 47, no. 3, pp.194-205, March (2001).
DOI: 10.1139/w00-141
Google Scholar