Chemical Modification of Soy Flour Protein and its Properties

Article Preview

Abstract:

This work is to examine ways to chemically modify soy proteins flours and analyze the results and determine the adhesive performance. Reaction with acetic anhydride converts amine and hydroxyl groups to amides and esters, respectively that are less polar and can make the adhesive more water resistant.The succinic anhydride reacts with these same groups but the products have terminal carboxylic acid groups that can react with the polyamidoamine-epichlorohydrin (PAE) resin that is used to cross-link the soy adhesives for improving bond strength. The attenuated total reflectance infrared spectroscopy (ATR-IR) is used to examine changes in the soy flour in going from unmodified to acetylated and succinylated state.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

875-881

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Utsumi, Y. Matsumura, and T. Mori, Structure-function relationships of soy proteins. In: Food Proteins and Their Applications, Damodaran, S.; Paraf, A., Eds., Marcel Dekker, Inc., New York, 1997, pp.257-291.

DOI: 10.1201/9780203755617-9

Google Scholar

[2] J. I. Boye, C. Y. Ma, and V. R. Harwalkar, Thermal denaturation and coagulation of proteins. In: Food Proteins and Their Applications, Damodaran, S.; Paraf, A., Eds., Marcel Dekker, Inc., New York, 1997, pp.25-56.

DOI: 10.1201/9780203755617-2

Google Scholar

[3] K. Li, Formaldehyde-free lignocellulosic adhesives and composites made from the adhesives, 2007, U.S. Patent No. 7, 252, 735.

Google Scholar

[4] K. Li, S. Peshkova, and X. Gen, Investigation of soy protein-kymene® adhesive systems for wood composites, J. Am. Oil Chem. Soc., Vol. 81, p.487–491, May (2004).

DOI: 10.1007/s11746-004-0928-1

Google Scholar

[5] A. J. Allen, B. K. Spraul, and J. M. Wescott, Improved CARB IIcompliant soy adhesives for laminates, Wood Adhevises, Session 3A –Resin Chemistry 2, pp.186-194, (2009).

Google Scholar

[6] D. R. Canchi, D. Paschek, and A. G. García, Equilibrium study of protein denaturation by urea, J. Am. Chem. Soc., vol. 132, no. 7, p.2338–2344, February (2010).

DOI: 10.1021/ja909348c

Google Scholar

[7] G. E. Means and R. E. Feeney, Chemical modifications of proteins: a review, J. Food Biochem., vol. 22, no. 5, pp.399-425, November (1998).

Google Scholar

[8] J. M. Wescott, M. J. Birkeland, J. Yavorksky, and R. Brady, Recent advances in soy containing PB and MDF, Wood Adhesives 2009. South Lake Tahoe, CA, Frihart, C. R.; Hunt, C. G.; Moon, R. J. (Eds. ); Forest Products Society, Madison, WI, pp.146-151, (2010).

Google Scholar

[9] K. L. Franzen and J. E. Kinsella, Functional properties of succinylated and acetylated soy protein, J. Agric. Food Chem., vol. 24, no. 4, pp.788-799, (1976).

DOI: 10.1021/jf60206a036

Google Scholar

[10] C. R. Frihart, B. N. Dally, J. M. Wescott, and M. J. Birkeland, Biobased adhesives and reliable rapid small scale bond strength testing, International Symposium on Advanced Biomass Science and Technology for Bio-based Products, Beijing, China, May 23-25, 2007, pp.364-370, (2009).

Google Scholar

[11] S. W. Sun, Y. C. Lin, Y. M. Weng, and M. J. Chen, Efficiency improvements on ninhydrin method for amino acid quantification, J. Food Comp. Anal., vol. 19, no. 2-3, pp.112-117, March-May (2006).

DOI: 10.1016/j.jfca.2005.04.006

Google Scholar

[12] M. Subirade, I. Kelly, J. Gueguen, and M. Pezolet, Molecular basis of film formation from a soybean protein: comparison between the conformation of glycinin in aqueous solution and in films, Int. J. Biol. Macromol., vol. 23, no. 4, pp.241-249, Novembe (1998).

DOI: 10.1016/s0141-8130(98)00052-x

Google Scholar

[13] C. Mangavel, J. Barbot, Y. Popineau, and J. Gueguen, Evolution of wheat gliadins conformation during film formation: a fourier transform infrared study, J. Agric. Food Chem., vol. 49, pp.867-872, (2001).

DOI: 10.1021/jf0009899

Google Scholar

[14] Y. Mizutani, Y. Matsumura, K. Imamura, K. Nakanishi, and T. Mori, Effects of water activity and lipid addition on secondary structure of Zein in powder systems, J. Agric. Food Chem., vol. 51, pp.229-235, (2003).

DOI: 10.1021/jf0205007

Google Scholar

[15] J. N. Shera, J. W. Rawlins, and S. F. Thames, Secondary structural changes during adhesive processing of soy protein isolate via ATR-IR, Wood Adhevises, Session 3A – Bio-based Adhesives, pp.285-289, (2005).

Google Scholar

[16] X. S. Sun, Soy protein adhesives, In Bio-Based Polymers and Composites, R. P. Wool and X. S. Sun, Eds., Elsevier-Academic Press, 2005, pp.327-368.

DOI: 10.1016/b978-012763952-9/50011-3

Google Scholar

[17] Z. Zhong, X. S. Sun, and D. Wang, Isoelectric pH of Polyamide– Epichlorohydrin Modified Soy Protein Improved Water Resistance and Adhesion Properties, J. Appl. Polym. Sci., Vol. 103, no. 4, p.2261– 2270, February (2007).

DOI: 10.1002/app.25388

Google Scholar

[18] J. R. Williams, in: Wood Adhesives 2009. South Lake Tahoe, CA, C. R. Frihart, C. G. Hunt, and R. J. Moon, Eds., Forest Products Society, Madison, WI, 2010, p.12–16.

Google Scholar

[19] A. Cribb, Impact of Green Building on Wood Adhesives, In: Wood Adhesives 2009. South Lake Tahoe, CA, Frihart, C. R.; Hunt, C. G.; Moon, R. J., Eds., Forest Products Society, Madison, WI, 2010, pp.29-39.

Google Scholar