[1]
Wang Qiliang, Snyder Shane, Kim Jungwoo, et al. Aqueous Ethanol modified Nanoscale Zerovalent Iron in Bromate Reduction: Synthesis, Characterization, and Reactivity [J]. Environ. Sci. Technol, 2009, 43:3292–3299.
DOI: 10.1021/es803540b
Google Scholar
[2]
Abul B. M. Giasuddin, Sushil R. Kanel, Heechul Choi. Adsorption of Humic Acid onto Nanoscale Zerovalent Iron and Its Effect on Arsenic Removal [J]. Environ. Sci. Technol., 2007, 41 (6): 2022–(2027).
DOI: 10.1021/es0616534
Google Scholar
[3]
Sushil Raj Kanel, Bruce Manning, Laurent Charlet, et al. Removal of Arsenic(III) from Groundwater by Nanoscale Zero-Valent Iron[J]. Environ. Sci. Technol., 2005, 39 (5): 1291–1298.
DOI: 10.1021/es048991u
Google Scholar
[4]
Ji-Hun Kim, Paul G. Tratnyek, Yoon-Seok. Chang Rapid Dechlorination of Polychlorinated Dibenzo-p-dioxins by Bimetallic and Nanosized Zerovalent Iron[J]. Environ. Sci. Technol., 2008, 42 (11): 4106–4112.
DOI: 10.1021/es702560k
Google Scholar
[5]
Laura B. Hoch, Elizabeth J. Mack, Bianca W. Carbothermal, et al. Synthesis of Carbon-supported Nanoscale Zero-valent Iron Particles for the Remediation of Hexavalent Chromium [J]. Environ. Sci. Technol., 2008, 42 (7): 2600–2605.
DOI: 10.1021/es702589u
Google Scholar
[6]
Tonghua Zheng, Jingjing Zhan, Jibao He et. al. Reactivity characteristics of nanoscale zerovalent iron−silica composites for trichloroethylene remediation, Environ. Sci. Technol., 2008, 42 (12), 4494–4499.
DOI: 10.1021/es702214x
Google Scholar
[7]
Williams, A.G. B.; Gregory, K. B.; Parkin, G. F.; Scherer, M. M. Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine Transformation by biologically reduced ferrihydrite: evolution of Fe mineralogy, surface area, and reaction rates. Environ. Sci. Technol., 2005, 39, 5183-5189.
DOI: 10.1021/es0490525
Google Scholar
[8]
An Li, Chao Tai, Zongshan Zhao, et. al. Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles , Environ. Sci. Technol., 2007, 41 (19), 6841–6846.
DOI: 10.1021/es070769c
Google Scholar
[9]
Elliott, D. W.; Zhang, W. -X. Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment. Environ. Sci. Technol., 2001, 35, 4922 -4926.
DOI: 10.1021/es0108584
Google Scholar
[10]
Quinn, J., Geiger, C., Clausen, C., et. al. Field Demonstration of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron. Environ. Sci. Technol., 2005, 39, 1309-1318.
DOI: 10.1021/es0490018
Google Scholar
[11]
Wang W. ,Jin Z H. ,Li T L., et al. Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal. Chemosphere,2006, 65(8):1396—1404.
DOI: 10.1016/j.chemosphere.2006.03.075
Google Scholar
[12]
Li T L, Sun L L, Jin Z H, et al. 2009. Nitrate reduction in groundwater by iron-system bimetallic nanoparticles [J]. Joural of Jilin University (Engineering and Technology Edition), 39(2): 362-367(in Chinese).
Google Scholar
[13]
Li T L, Wang D, Jin Z H, et al. 2008. Synthesis of sodium oleate/Fe nanoparticles and dechlorination of TCE in groundwater [J]. Journal of Functional Materials, 39(8): 1385-1388(in Chinese).
Google Scholar
[14]
Zhiqiang Li , Karlgreden, Pderoj.J. Alvarez, Kelvinb. Gregory, et al. Adsorbed Polymer and NOM LimitsAdhesion and Toxicity of Nano Scale Zerovalent Iron to E. coli[J], Environ. Sci. Technol. 2010, 44, 3462–3467.
DOI: 10.1021/es9031198
Google Scholar
[15]
Nel A, Xia T, Madler L, et al. 2006. Toxic potential of materials at the nanolevel [J]. Science, 311: 622-627.
DOI: 10.1126/science.1114397
Google Scholar
[16]
Cheng I F, Muftikian R, Fernando Q, et al. 1997. Reduction of nitrate to ammonia by zero-valent iron [J]. Chemosphere, 35(11): 2689-2696.
DOI: 10.1016/s0045-6535(97)00275-0
Google Scholar
[17]
Johnson T L, Scherer M M, Tratnyek P G. 1996. Kinetics of halogenated organic compound degradation by iron metal[J]. Environmental Science & Technology, 30: 2634-2640.
DOI: 10.1021/es9600901
Google Scholar
[18]
Melanie Auffan, Wafa Achouak, Jerome Rose, et al,. Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward Escherichia coli. Environ. Sci. Technol., 2008, 42 (17): 6730–6735.
DOI: 10.1021/es800086f
Google Scholar