Toxicity of Fe0 Nanoparticles on the Denitrifying Bacteria-Alcaligenes Eutrophus

Article Preview

Abstract:

The bio-toxicity of Fe0 nanoparticles on the denitrifying bacterial- Alcaligenes eutrophus was detected by the two methods of detecting inhibition of the growth of microorganisms and nitrification inhibition rate. The results showed that Fe0 nanoparticles had obvious toxicity on the growth and nitrification inhibition rate. Besides, there had distinct relationship between dose and toxicity of Fe0 nanoparticles. Meanwhile, we also studied effects of different kinds of Fe0 nanoparticles on microorganism, including bimetallic nanoparticles(nano Fe–Ni) and coated iron nanoparticles (sodium oleate–Fe0nanoparticles). We detected that the bio-toxicity of these three Fe0 nanoparticles followed the sequence of Ni-containing nanoparticles>unmodified NZVI>the sodium oleate–Fe0 nanoparticles. In conclusion, Fe0 nanoparticles had visible toxicity on the denitrifying bacterial, but we can decrease the toxicity of Fe nanoparticles by surface coating and decoration of nano-metal materials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

889-894

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wang Qiliang, Snyder Shane, Kim Jungwoo, et al. Aqueous Ethanol modified Nanoscale Zerovalent Iron in Bromate Reduction: Synthesis, Characterization, and Reactivity [J]. Environ. Sci. Technol, 2009, 43:3292–3299.

DOI: 10.1021/es803540b

Google Scholar

[2] Abul B. M. Giasuddin, Sushil R. Kanel, Heechul Choi. Adsorption of Humic Acid onto Nanoscale Zerovalent Iron and Its Effect on Arsenic Removal [J]. Environ. Sci. Technol., 2007, 41 (6): 2022–(2027).

DOI: 10.1021/es0616534

Google Scholar

[3] Sushil Raj Kanel, Bruce Manning, Laurent Charlet, et al. Removal of Arsenic(III) from Groundwater by Nanoscale Zero-Valent Iron[J]. Environ. Sci. Technol., 2005, 39 (5): 1291–1298.

DOI: 10.1021/es048991u

Google Scholar

[4] Ji-Hun Kim, Paul G. Tratnyek, Yoon-Seok. Chang Rapid Dechlorination of Polychlorinated Dibenzo-p-dioxins by Bimetallic and Nanosized Zerovalent Iron[J]. Environ. Sci. Technol., 2008, 42 (11): 4106–4112.

DOI: 10.1021/es702560k

Google Scholar

[5] Laura B. Hoch, Elizabeth J. Mack, Bianca W. Carbothermal, et al. Synthesis of Carbon-supported Nanoscale Zero-valent Iron Particles for the Remediation of Hexavalent Chromium [J]. Environ. Sci. Technol., 2008, 42 (7): 2600–2605.

DOI: 10.1021/es702589u

Google Scholar

[6] Tonghua Zheng, Jingjing Zhan, Jibao He et. al. Reactivity characteristics of nanoscale zerovalent iron−silica composites for trichloroethylene remediation, Environ. Sci. Technol., 2008, 42 (12), 4494–4499.

DOI: 10.1021/es702214x

Google Scholar

[7] Williams, A.G. B.; Gregory, K. B.; Parkin, G. F.; Scherer, M. M. Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine Transformation by biologically reduced ferrihydrite: evolution of Fe mineralogy, surface area, and reaction rates. Environ. Sci. Technol., 2005, 39, 5183-5189.

DOI: 10.1021/es0490525

Google Scholar

[8] An Li, Chao Tai, Zongshan Zhao, et. al. Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles , Environ. Sci. Technol., 2007, 41 (19), 6841–6846.

DOI: 10.1021/es070769c

Google Scholar

[9] Elliott, D. W.; Zhang, W. -X. Field Assessment of Nanoscale Bimetallic Particles for Groundwater Treatment. Environ. Sci. Technol., 2001, 35, 4922 -4926.

DOI: 10.1021/es0108584

Google Scholar

[10] Quinn, J., Geiger, C., Clausen, C., et. al. Field Demonstration of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron. Environ. Sci. Technol., 2005, 39, 1309-1318.

DOI: 10.1021/es0490018

Google Scholar

[11] Wang W. ,Jin Z H. ,Li T L., et al. Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal. Chemosphere,2006, 65(8):1396—1404.

DOI: 10.1016/j.chemosphere.2006.03.075

Google Scholar

[12] Li T L, Sun L L, Jin Z H, et al. 2009. Nitrate reduction in groundwater by iron-system bimetallic nanoparticles [J]. Joural of Jilin University (Engineering and Technology Edition), 39(2): 362-367(in Chinese).

Google Scholar

[13] Li T L, Wang D, Jin Z H, et al. 2008. Synthesis of sodium oleate/Fe nanoparticles and dechlorination of TCE in groundwater [J]. Journal of Functional Materials, 39(8): 1385-1388(in Chinese).

Google Scholar

[14] Zhiqiang Li , Karlgreden, Pderoj.J. Alvarez, Kelvinb. Gregory, et al. Adsorbed Polymer and NOM LimitsAdhesion and Toxicity of Nano Scale Zerovalent Iron to E. coli[J], Environ. Sci. Technol. 2010, 44, 3462–3467.

DOI: 10.1021/es9031198

Google Scholar

[15] Nel A, Xia T, Madler L, et al. 2006. Toxic potential of materials at the nanolevel [J]. Science, 311: 622-627.

DOI: 10.1126/science.1114397

Google Scholar

[16] Cheng I F, Muftikian R, Fernando Q, et al. 1997. Reduction of nitrate to ammonia by zero-valent iron [J]. Chemosphere, 35(11): 2689-2696.

DOI: 10.1016/s0045-6535(97)00275-0

Google Scholar

[17] Johnson T L, Scherer M M, Tratnyek P G. 1996. Kinetics of halogenated organic compound degradation by iron metal[J]. Environmental Science & Technology, 30: 2634-2640.

DOI: 10.1021/es9600901

Google Scholar

[18] Melanie Auffan, Wafa Achouak, Jerome Rose, et al,. Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward Escherichia coli. Environ. Sci. Technol., 2008, 42 (17): 6730–6735.

DOI: 10.1021/es800086f

Google Scholar