[1]
Z. She, C. Jin, Z. Huang, B. Zhang, Q. Feng, and Y. Xu, Silk fibroin/chitosan scaffold: preparation, characterization, and culture with HepG2 cell, Journal of Materials Science: Materials in Medicine, vol. 19, pp.3545-3553, (2008).
DOI: 10.1007/s10856-008-3526-y
Google Scholar
[2]
E. Gil, D. Frankowski, S. Hudson, and R. Spontak, Silk fibroin membranes from solvent-crystallized silk fibroin/gelatin blends: Effects of blend and solvent composition, Materials Science and Engineering: C, vol. 27, pp.426-431, (2007).
DOI: 10.1016/j.msec.2006.05.017
Google Scholar
[3]
G. Wang, H. Yang, M. Li, S. Lu, X. Chen, and X. Cai, The use of silk fibroin/hydroxyapatite composite co-cultured with rabbit bonemarrow stromal cells in the healing of a segmental bone defect, Journal of Bone and Joint Surgery - Series B, vol. 92, pp.320-325, (2010).
DOI: 10.1302/0301-620x.92b2.22602
Google Scholar
[4]
J. Nourmohammadi, S. Sadrnezhaad, and A. Behnam Ghader, Bone-like apatite layer formation on the new resin-modified glass-ionomer cement, Journal of Materials Science: Materials in Medicine, vol. 19, pp.3507-3514, (2008).
DOI: 10.1007/s10856-008-3501-7
Google Scholar
[5]
J. Christoffersen, M. Christoffersen, N. Kolthoff, and O. B renholdt, Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection, Bone, vol. 20, pp.47-54, (1997).
DOI: 10.1016/s8756-3282(96)00316-x
Google Scholar
[6]
P. Wutticharoenmongkol, N. Sanchavanakit, P. Pavasant, and P. Supaphol, Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles, Macromolecular bioscience, vol. 6, pp.70-77, (2006).
DOI: 10.1002/mabi.200500150
Google Scholar
[7]
H. Yang, L. Zhang, H. Zhang, and K. Xu, Preparation and characterization of the silk fibroin/hydroxyapatite composites, Fuhe Cailiao Xuebao(Acta Mater. Compos. Sin. )(China), vol. 24, pp.141-146, (2007).
Google Scholar
[8]
X. Bin, Z. Da-Li, Y. Wei-Zhong, O. Jun, T. Yan-Juan, and C. Huai-Qing, Preparation and Characterization of Porous Apatite-Wollastonite/β-Tricalcium Phosphate Composite Scaffolds, Journal of Inorganic Materials, vol. 2, pp.427-432, (2006).
Google Scholar
[9]
H. Zreiqat, C. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, et al., Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants, Journal of biomedical materials research, vol. 62, pp.175-184, (2002).
DOI: 10.1002/jbm.10270
Google Scholar
[10]
F. O'brien, B. Harley, I. Yannas, and L. Gibson, The effect of pore size on cell adhesion in collagen-GAG scaffolds, Biomaterials, vol. 26, pp.433-441, (2005).
DOI: 10.1016/j.biomaterials.2004.02.052
Google Scholar