Characteristics of Lysozyme Adsorption on Magnetic Fe3O4/Chitosan Nanoparticles at Fixed pH

Article Preview

Abstract:

Magnetic Fe3O4/chitosan nanoparticles were synthesized for lysozyme separation from solution. The adsorption of lysozyme was investigated on magnetic Fe3O4/chitosan nanoparticles at fixed pH 6.0, because the enzymatic activity of lysozyme reaches its maximum in this condition. The influence of initial lysozyme concentration, temperature and contact time on lysozyme adsorption was studied. The results of lysozyme adsorption indicated that the adsorption isotherm fitted Sips model well. The maximum adsorption capacity was 144.11mg/g at 310 K. The thermodynamic parameters, ΔG0, ΔH0 and ΔS0, illustrated that the adsorption of lysozyme was endothermic and spontaneous process.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

909-913

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Gemili, A. Yemenicioğlu, S.A. Altınkaya, Development of cellulose acetate based antimicrobial food packaging materials for controlled release of lysozyme, J. Food Eng. 90 (2009) 453-462.

DOI: 10.1016/j.jfoodeng.2008.07.014

Google Scholar

[2] M.I. Hoq, K. Mitsuno, Y. Tsujino, T. Aoki, H.R. Ibrahim, Triclosan-lysozyme complex as novel antimicrobial macromolecule: A new potential of lysozyme as phenolic drug-targeting molecule, Int. J. Biol. Macromol. 42 (2008) 468-477.

DOI: 10.1016/j.ijbiomac.2008.03.003

Google Scholar

[3] Z. Zhai, Y.J. Wang, Y. Chen, G.S. Luo, Fast adsorption and separation of bovine serum albumin and lysozyme using micrometer-sized macromesoporous silica spheres, J. Sep. Sci. 31 (2008) 3527-3536.

DOI: 10.1002/jssc.200800323

Google Scholar

[4] Z.B. Lei, Y.D. Cao, L.Q. Dang, A.Y. Lo, N.Y. Yu, S.B. Liu, Adsorption of lysozyme on spherical mesoporous carbons (SMCs) replicated from colloidal silica arrays by chemical vapor deposition, J. Colloid Interface Sci. 339 (2009) 439-445.

DOI: 10.1016/j.jcis.2009.08.010

Google Scholar

[5] A. Bonincontro, A.D. Francesco, G. Onori, Influence of pH on lysozyme conformation revealed by dielectric spectroscopy, Colloids Surf., B 12 (1998) 1-5.

DOI: 10.1016/s0927-7765(98)00048-4

Google Scholar

[6] I. Šafařík, M. Šafaříková, Batch isolation of hen egg white lysozyme with magnetic chitin, J. Biochem. Bioph. Methods 27 (1993) 327-330.

DOI: 10.1016/0165-022x(93)90013-e

Google Scholar

[7] W. Ma, F.Q. Ya, M. Han, R. Wang, Characteristics of equilibrium, kinetics studies for adsorption of fluoride on magnetic-chitosan particle, J. Hazard. Mater. 143 (2007) 296-302.

DOI: 10.1016/j.jhazmat.2006.09.032

Google Scholar

[8] I. Langmuir, The sorption of gases on plane surfaces of glass, mica and platinum, J. Amer. Chem. Soc. 40 (1918) 1361-1403.

DOI: 10.1021/ja02242a004

Google Scholar

[9] H. Freundlich, Adsoption in solids, Zeitschrift fuer Physikalische Chemie, Stoechiometrie und Verwandtschaftslehre, 57 (1906) 385-470.

Google Scholar

[10] R. Sips, On the structure of a catalyst surface, J. Chem. Phys. 16 (1948) 490-495.

Google Scholar

[11] Z.M. Ni, S.J. Xia, L.G. Wang, F.F. Xing, G.X. Pan, Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: Adsorption property and kinetic studies, J. Colloid and Interface Sci. 316 (2007) 284-291.

DOI: 10.1016/j.jcis.2007.07.045

Google Scholar