[1]
C. Li, C. Lai, D. Sigman, and R. Gaynor, Cloning of a cellular factor, interleukin binding factor, that binds to NFAT-like motifs in the human immunodeficiency virus long terminal repeat, Proc Natl Acad Sci, vol. 87, no. 17, pp.7739-7743, Sep (1991).
DOI: 10.1073/pnas.88.17.7739
Google Scholar
[2]
A. Nirula, D. Moore, and R. Gaynor, Constitutive binding of the transcription factor interleukin-2 (IL-2) enhancer binding factor to the IL-2 Promoter, J Biol Chem, vol. 273, no. 12, pp.7736-7745, March (1997).
DOI: 10.1074/jbc.272.12.7736
Google Scholar
[3]
T. Graber, S. Baird, P Kao, M. Mathews, and M. Holcik, NF45 functions as an IRES trans-acting factor that is required for translation of cIAP1 during the unfolded protein response., Cell Death Differ, vol. 17, no. 4, pp.719-729, April (2010).
DOI: 10.1038/cdd.2009.164
Google Scholar
[4]
P. Marcoulatos, G. Koussidis, Z. Mamuris, V. Velissariou, and N. Vamvakopoulos, Mapping interleukin enhancer binding factor 2 gene (ILF2) to human chromosome 1(1q11-qter and 1p11-p.12) by polymerase chain reaction amplification of human-rodent somatic cell hybrid DNA templates, J Interferon Cytokine Res, vol. 16, no. 12, pp.1035-1038, Dec (1996).
DOI: 10.1089/jir.1996.16.1035
Google Scholar
[5]
G. Zhao, L. Shi, D. Qiu, H. Hu, and. P Cao, NF45/ILF2 tissue expression, promoter analysis, and interleukin-2 transactivating function, Exp Cell Res, vol. 305, no. 2, pp.312-323, May (2005).
DOI: 10.1016/j.yexcr.2004.12.030
Google Scholar
[6]
N. Ting, P. Kao, D. Chan, L Lintott, and. S Lees-Miller, DNA-dependent protein kinase interacts with antigen receptor response element binding proteins NF90 and NF45, J Biol Chem, vol. 273, no. 4, pp.2136-2145, Jan (1998).
DOI: 10.1074/jbc.273.4.2136
Google Scholar
[7]
G. Deyu, A. Niha, M. Andrew, J. Cindy, L. Quan, et al, Nuclear factor 45 (NF45) is a regulatory subunit of complexes with NF90/110 involved in mitotic control, Mol Cell Biol, vol. 26, no. 14, pp.4629-4641, March (2008).
DOI: 10.1128/mcb.00120-08
Google Scholar
[8]
S. Sakamoto, K. Aoki, T. Higuchi, H. Todaka, K. Morisawa, et al, The NF90-NF45 complex functions as a negative regulator in the microRNA processing pathway l, Mol Cell Biol, vol. 29, no. 13, pp.3754-3769, July (2009).
DOI: 10.1128/mcb.01836-08
Google Scholar
[9]
S. Ranpura, U. Deshmukh, and P. Reddi, NF45 and NF90 in murine seminiferous epithelium: potential role in SP-10 gene transcription, J Androl, vol. 29, no. 2, pp.186-197, March (2008).
DOI: 10.2164/jandrol.107.003756
Google Scholar
[10]
M. Meagher, J. Schumacher, K. Lee, R. Holdcraft, S. Edelhoff, et al. Identification of ZFR, an ancient and highly conserved murine chromosome-associated zinc finger protein, Gene, vol. 228, no. 1-2. pp.197-211, Mar (1999).
DOI: 10.1016/s0378-1119(98)00615-5
Google Scholar
[11]
A. Giesecke, R. Fang, and J. Joung, Synthetic protein-protein interaction domains created by shuffling Cys2His2 zinc-fingers, Mol Syst Biol, vol. 2, pp.2006-2011, March (2006).
DOI: 10.1038/msb4100053
Google Scholar
[12]
K. Merrill, and M Gromeier, The double-stranded RNA binding protein 76: NF45 heterodimer inhibits translation initiation at the rhinovirus type 2 internal ribosome entry site, J Virol, vol. 80, no. 14. pp.6936-6942, July (2006).
DOI: 10.1128/jvi.00243-06
Google Scholar
[13]
H. Lin, and J. Shao, L. Xiang, and H. Wang, Molecular cloning, characterization and expression analysis of grass carp (Ctenopharyngodon idellus) NF45 (ILF2) cDNA, a subunit of the nuclear factor of activated T-cells (NF-AT), Fish Shellfish Immunol, vol. 21, no. 4. pp.385-392, Oct (2006).
DOI: 10.1016/j.fsi.2006.01.003
Google Scholar