[1]
O. Bolarinwa and A. Waifielate: Mechanical Property Evaluation of Coconut Fibre, BTH-AMT-Ex--2008/D-05-SE, p.60. TEK/avd. för maskinteknik, 2008.
Google Scholar
[2]
D. Dai and X. Tang, Transitioning towards sustainable management of building materials in China, p.66. TEK/avd. för maskinteknik, (2005)
Google Scholar
[3]
I.S Arvanitoyannis and L.A. Bosnea: Recycling Of Polymeric Materials Used For Food Packaging: Current Status And Perspective,s Food Reviews International, 17(3), 291-346 (2001).
DOI: 10.1081/fri-100104703
Google Scholar
[4]
AEEA & ICT Recycling. Wij Recyclen Graag Uw Ict En Elektrische Apparaten. http: www.recydur.com
Google Scholar
[5]
P.A. Fowler, J.M. Hughes and R. Melias: Review Bio Composites: Technology, Environmental Credentials and Market Forces, Journal of the Science of Food and Agriculture 86: 1781- 1789, 2006.
DOI: 10.1002/jsfa.2558
Google Scholar
[6]
J.E.G. Van Dam, Van Den Oever, M.J.A., Teunissen, W., Keijsers, E.R.P. and Peralta, A.G.: Production of High Density/ High Performance Binderless Boards from Whole Coconut Husk. Part 1: Lignin as Intrinsic Thermosetting Binder Resin.
DOI: 10.1016/j.indcrop.2003.10.003
Google Scholar
[7]
M. Kern: Food, Feed, Fibre, Fuel and Industrial Product of the Future: Challenges and Opportunities. Understanding the Strategic Potential of Plant Genetic Engineering. J. Agronomy of Crop Science 188,291-305(2002).
DOI: 10.1046/j.1439-037x.2002.00587.x
Google Scholar
[8]
A.K. Bledzik and J. Gassan: Composite Reinforced with Cellulose Based fibres. Progress in Polymer Science 24 (1999) 221-274.
Google Scholar
[9]
C.K. Moshibudi: The Processing Properties of Natural Fibre Reinforced Higher α- Olefin Based Thermoplastics, 2005.
Google Scholar
[10]
M.K. Mohan Raoand K. Mohan Rao: Extraction and Tensile Properties of Natural Fibres: Vakka, Date and Bamboo. Department of Mechanical Engineering, V.R. Siddhartha Engineering College, Vijayawada 520 007, AP, India.
DOI: 10.35940/ijrte.f8308.038620
Google Scholar
[11]
R. Narendra and Y. Yigi: Biofibres from Agricultural Byproducts for Industrial Applications.
Google Scholar
[12]
T. Fabio, H.D.S. Thais and G.S. Kestur: Studies on Lignocellulosic Fibres of Brazil part 2: Morphology and Properties of Brazilian Coconut Fibre.
Google Scholar
[13]
C.S. Vavrina, K. Armbrester, A. Mireia and M. Pena: Coconut Coir as an Alternative to Peat Media for Vegetable Transplant Production. University of Florida, Southwest Florida Research and Education Centre P.O. Drawer 5127, Immokalee, FL 33934.
Google Scholar
[14]
] A. Rajan, C.R. Senan, C. Pavithranand T.A. Emilia: Biosoftening Of Coir Fibre Using Selected Microorganisms. Bioprocess Biosyst Eng (2005) 28: 165-173.
DOI: 10.1007/s00449-005-0023-2
Google Scholar
[15]
Fibres, For Paper, Cordage & Textiles. http://waynesword.palomar.edu/traug99b.htm
Google Scholar
[16]
MTS Systems Corporation, www.mts.com, c (2002)
Google Scholar
[17]
Atlantic Consulting and IPU. 1998. "LCA Study of the Product Group Personal Computers in the EU Ecolabel Scheme," http://www.europa.eu.int/comm/environment/ecolabel/ pdf/personal_computers/lcastudy_pc_1998.pdf (accessed March 12, 2006).
Google Scholar
[18]
K.-H. Robèrt and others, eds. 2002. "Strategic sustainable development: Selection, design and synergies of applied tools". Journal of Cleaner Production, 10:197-214.
DOI: 10.1016/s0959-6526(01)00061-0
Google Scholar
[19]
H. Ny, J.P. MacDonald, G. Broman, R. Yamamoto and K.-H. Robèrt: Sustainability constraints as system boundaries: an approach to making life-cycle management strategic. Journal of Industrial Ecology, 10:61-77, 2006.
DOI: 10.1162/108819806775545349
Google Scholar
[20]
B.J. Russo: The many different uses of coconut fiber in Food. http://www.bo-jack-russo.quazen.com/
Google Scholar
[21]
P.A. Egwaikhide, E.E. Akporhonor and F.E Okieimen: Utilization of coconut fibre carbon in the removal of soluble petroleum fraction polluted water, International Journal of Physical Sciences, 2(2), pp.047-049, 2007.
Google Scholar
[22]
M. Baiardo, E. Zini and M. Scandola: Flax fibre-Polyester Composites, Composites: Part A, 35. 703-710. 2004.
DOI: 10.1016/j.compositesa.2004.02.004
Google Scholar
[23]
S.B. Brahim and R.B. Cheikh: Influence of Fibre Orientation and Volume Fraction on the Tensile Properties of Unidirectional Alfa-Polyester Composite. Composites Science and Technology, 2006.
DOI: 10.1016/j.compscitech.2005.10.006
Google Scholar
[24]
M. Idicula, A. Boudenne, L. Umadevi, L. Ibos, Y. Candau, and S. Thomas. Thermophysical Properties of Natural Fibre Reinforced Polyester Composite. Composites Science and Technology, 66. 2719-2725, 2006.
DOI: 10.1016/j.compscitech.2006.03.007
Google Scholar
[25]
M. Brahmakumar, C. Pavithran and R.M. Pillai: Coconut fibre reinforced polyethylene composites: effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites. Composites Science and Technology 65: 563-569, 2005.
DOI: 10.1016/j.compscitech.2004.09.020
Google Scholar
[26]
I.Z. Bujang, M.K. Awang and A.E. Ismail: Study on the dynamic characteristic of coconut fibre reinforced composites, Regional Conference on Engineering Mathematics, Mechanics, Manufacturing & Architecture (EM*ARC) 2007, Noise, Vibration and Comfort Research Group.
Google Scholar
[27]
R.L. Ferreira, C.R.G. Furtado, L.L.Y. Visconte and J.L. Leblanc: Optimized preparation techniques for PVC-green coconut fiber composites, International Journal of Polymeric Materials, 2006, 55 (10-12), 10 pp.
DOI: 10.1080/00986440600642991
Google Scholar