The Pilot-Scale Study of Constructed Intensified Biological Bed on the Purification of Northern Transboundary Polluted River Water

Article Preview

Abstract:

Constructed Intensified Biological Bed (CIBB) is a new sewage disposal technology based on subsurface flow constructed wetland and biological aerated filter. The CIBB was applied for serious polluted transboundary river water. The removal rates of pilot scale CIBB on simulated Tiaozi River system CODcr、NH3-N and TN were over 70%, 90%, 60% respectively. The hydraulic loading of CIBB reached 4.8m•d-1, and CODcr organic loading was 185g•(m3d) -1 and the ammonium loading was 19 g•(m3d) -1. If the CIBB is used on the Tiaozi River, CODcr and ammonium in outflow of CIBB system will reach class V standards of Environmental quality standard for surface water (GB3838-2002).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

2727-2734

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. CHAO, X. L. DAI, W. ZHANG, et al, Heilongjiang Agric. Sci. 11 (2010) 53-56. In Chinese.

Google Scholar

[2] Y. SHI, Z. X. XU, Y. X. MAO, Environ. Eng. 25 (2007) 74-75. In Chinese.

Google Scholar

[3] W. F. MA, X. H. ZHAO, J. M. SUN, et al, Environ. Sci. 27-1 (2006) 85-90. In Chinese.

Google Scholar

[4] C.Y. ZOU, W.J. ZHANG, X.H. LI, et al, Environ. Sci. and Tech. 30 (2007) 99-102. In Chinese.

Google Scholar

[5] X. XU, J.S. CAO, Water Res. Prot. 22 (2006) 30-33. In Chinese.

Google Scholar

[6] C.W. HU, Z.D. SUN, J.L. LI, et al, Chin. J Environ. Eng. 1 (2007) 51-56. In Chinese.

Google Scholar

[7] T.Z. ZHENG, J.R. ZHOU, C. WANG, Chin. J. Environ. Sci. 23 (2002) 115-117. In Chinese.

Google Scholar

[8] C.X. LIU, H.Y. HU, J. ZHANG, et al, Environ. Sci. 24 (2003) 92-96. In Chinese.

Google Scholar

[9] Ministry of Environmental Protection of the People's Republic of China: Determination Methods for Examination of Water and Wasewater. Beijing: China Environmental Science Press (2002). In Chinese.

Google Scholar

[10] X. TU, B.S. SU, Y.H. KONG et al, Environ. Sci. 31 (2010) 2118-2123.

Google Scholar

[11] T. Hioshi, N. Funitake, S. Isao: Removal of ammonium nitogen in biozeolite reactor. Doboku Gakkai Bombun Hokokushu, 503 (1994) 159-166.

Google Scholar

[12] L.P. QIU, J. MA, L.X. ZHANG, Environ. Poll. Contr. 26 (2004) 433-436. In Chinese.

Google Scholar

[13] H.D. WANG, Y.Z. PENG,S.Y. WANG, et al, J. Beijng Instit. Tech. 16 (2007) 369-374. In Chinese.

Google Scholar

[14] R. Hong, K. Daekeun, L. Heun, Process Biochem. 43 (2008) 729-735.

Google Scholar

[15] S. M. Leung, J. C. Little, T. Holst, et al., J. Environ. Eng. 132 (2006) 181-189.

Google Scholar

[16] M K Stenstrom, D Rosso, H Melcer, et al., Water Environ Res. 80 (2008) 663-671.

Google Scholar

[17] Y.F. JIANG, D.H. LIU, T.X. SUN et al., Environ. Sci. 31 (2008) 703-708. In Chinese.

Google Scholar

[18] J.T.A. Verhoeven, A.F.M. Meuleman, Ecol. Eng. 122 (1999) 5-12.

Google Scholar

[19] S. Gerke, L.A. Baker, Y. Xu, Water Res. 35 (2001) 3857-3866.

Google Scholar

[20] M.S. Fleming, A.J. Horne, Environ. Sci. Tech. 36 (2002) 1231-1237.

Google Scholar

[21] A.J. Horne, Water Sci. Tech. 31 (1995) 341-351.

Google Scholar

[22] Y.Z. REN, B.P. ZHANG, B.Z. HAI, Environ. Sci. 28 (2008) 2700-2704. In Chinese.

Google Scholar