An Investigation of the Effects of Environmental Factors on Secondary Organic Aerosol (SOA) Formation

Article Preview

Abstract:

To understand the effects of environmental factors, such as the light intensity, reaction time, the concentration of reactant on the growth of secondary organic aerosol is very important. This paper investigated the effect of environmental factors on SOA formation from biogenic volatile organic compounds (BVOCs), results show that SOA formed from OH-initiated photooxidation of BVOCs is predominantly in the form of fine particles, which have diameters less than 2.5 µm. This paper also highlighted that both the number and mass concentration of SOA particles were increasing with the prolonging of the radiation time, the increasing of light intensity, and the increasing of the reactant concentrations. The results could provide useful information to infer possible emission sources of atmospheric particles in future field measurement.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 356-360)

Pages:

963-967

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Tsigaridis and M. Kanakidou: Atmos. Chem. Phys., Vol. 3 (2003), p.1849–1869.

Google Scholar

[2] D.S. Thomas, E.W. Amy, and R.D. Autumn: Annals of Botany, Vol. 101 (2008), p.5–18.

Google Scholar

[3] J.R. Odum, T.P.W. Jungkamp, R.J. Griffin, R.C. Flagan, and J.H. Seinfeld: Science, Vol. 276 (1997), pp.96-99.

Google Scholar

[4] C. Pilinis, S.N. Pandis, and J.H. Seinfeld: Journal of Geophysical Research, Vol. 100 (1995), pp.18739-18754.

Google Scholar

[5] E. Annmarie, M.L. Susan, R.H. Jeffrey, J.H. Kevin, and R.C. Glen: Environmental Science and Technology, Vol. 27 (1993), pp.626-635.

Google Scholar

[6] J. Schwartz, D.W. Dockery, and L.M.J. Neas: Air & Waste Management Association, Vol. 46 (1996), pp.927-939.

Google Scholar

[7] M. Claeys, B. Graham, G. Vas, W. Wang, R. Vermeylen, V. Pashynska, J. Cafmeyer, P. Guyon, M.O. Andreae, P. Artaxo, and W. Maenhaut: Science, Vol. 303 (2004), pp.1173-1176.

DOI: 10.1126/science.1092805

Google Scholar

[8] J.D. Surratt, S.M. Murphy, J.H. Kroll, N.L. Ng, L. Hildebrandt, A. Sorooshian, R. Szmigielski, R. Vermeylen, W. Maenhaut, M. Claeys, R.C. Flagan, and J.H. Seinfeld: Journal of Physical Chemistry, Vol. 110 (2006), pp.9665-9690.

DOI: 10.1021/jp061734m

Google Scholar

[9] J.D. Surratt, M. Lewandowski, J.H. Offenberg, M. Jaoui, T.E. Kleindienst, E.O. Edney, and J.H. Seinfeld: Environmental Science and Technology, Vol. 41-15 (2007), p.5363–5369.

DOI: 10.1021/es0704176

Google Scholar

[10] J.H. Kroll, N.L. Ng, S.M. Murphy, R.C. Flagan, and J.H. Seinfeld: Environmental Science and Technology, Vol. 40 (2006), pp.1869-1877.

Google Scholar

[11] E.S Kwok, R. Atkinson, and J. Arey: Environmental Science and Technology, Vol. 29 (1995), pp.2467-2469.

Google Scholar

[12] J. Yu, H.E. Jeffries, and R.M.L. Lacheur: Environmental Science and Technology, Vol. 29 (1995), pp.1923-1932.

Google Scholar

[13] R. Szmigielski, J.D. Surratt, R. Vermeylen, K. Szmigielska, J.H. Kroll, N.L. Ng, S.M. Murphy, A. Sorooshian, J.H. Seinfeld, and M. Claeys: Journal of Mass Spectrometry, Vol. 42 (2007), pp.101-116.

DOI: 10.1002/jms.1146

Google Scholar

[14] L. Ruppert, and K.H. Becker: Atmospheric Environment, Vol. 34 (2000), pp.1529-1542.

Google Scholar

[15] M. Jang, N.M. Czoschke, S. Lee, and R.M. Kamens: Science, Vol. 298 (2002), pp.814-817.

Google Scholar

[16] L. Hao, Z. Wang, M. Huang, S. Pei, Y. Yang, and W. Zhang: Journal of Environmental Sciences, 17-6 (2005), pp.912-916.

Google Scholar

[17] X. Liu, W. Zhang, M. Huang, Z. Wang, L. Hao, and W. Zhao: Journal of Environmental Sciences, Vol. 21 (2009), pp.447-451.

Google Scholar

[18] F. Paulot, J.D. Crounse, H.G. Kjaergaard, A. Kürten, St. J.M. Clair, J.H. Seinfeld, and P.O. Wennberg: Science, Vol. 325 (2009), pp.730-733.

DOI: 10.1126/science.1172910

Google Scholar