Effect of Oxygen Flow Rate on the Properties of Nanocolumnar ZnO Thin Films Prepared Using Radio Frequency Magnetron Sputtering System for Ultraviolet Sensor Applications

Article Preview

Abstract:

Nanostructured zinc oxide (ZnO) thin films were deposited on glass substrates using radio frequency (RF) magnetron sputtering system at different oxygen flow rates ranges between 0 to 40 sccm. Field emission scanning electron microscopy (FESEM) images was revealed that nanocolumnar ZnO structure thin films are produced on the substrates using high purity ZnO as the target at RF power of 250 W in the argon and oxygen gas mixture ambient. The XRD spectra reveal that the deposited films are preferentially grown along the c-axis indicating high ZnO crystallinity. The ultraviolet-visible (UV-Vis) spectra show that all samples are very transparent in the visible region (400 – 800 nm) with average transparency above 80 %. The photocurrent properties indicate that ZnO thin film prepared at oxygen flow rate of 20 sccm has the optimum characteristic for ultraviolet sensor applications. This finding suggested that the oxygen flow rates play important role and has critical value for semiconducting nanocolumnar ZnO growth in the sputtering system, which can produce ZnO thin film with high sensitivity of ultraviolet detection.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-6

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.Y. Park, D.J. Lee and S.S. Kim: Nanotechnology Vol. 16 (2005), p. (2044).

Google Scholar

[2] C.F. Yu, C.W. Sung, S.H. Chen, and S.J. Sun: Appl. Surface Sci. Vol. 256 (2009), p.792.

Google Scholar

[3] H. Chen, J. Ding, S. Ma: Superlattices and Microstructures Vol. 49 (2011), p.176.

Google Scholar

[4] J. H. Jun, H. Seong, K. Cho, B.M. Moon, and S. Kim: Ceramics International Vol. 35(7) (2009), p.2797.

Google Scholar

[5] Y.B.X. J.M. Liu, L.J. Wang, Q.F. Su, and W.M. Shi: Journal of Crystal Growth Vol. 300 (2007) p.353.

Google Scholar

[6] S. Jian, D. Qian, L.F. Juan, H.H. Qin, L.Z. Jun, and Z.X. Qing: Science China Physics, Mechanics & Astronomy Vol. 54(1) (2011), p.102.

Google Scholar

[7] X.C. Wang, X.M. Chen, and B.H. Yang: J. Alloys Compd. Vol. 488 (2009), p.232.

Google Scholar

[8] H. Zhu, J. Hüpkes, E. Bunte, S.M. Huang: Appl. Surface Sci. Vol. 256 (2010), p.4601.

Google Scholar

[9] Y.Y. Kim, B.H. Kong, and H.K. Cho: J. of Crystal Growth Vol. 330 (2011), p.17.

Google Scholar

[10] M.H. Mamat, M.Z. Sahdan, S. Amizam, H.A. Rafaie, Z. Khusaimi, A. Zain Ahmed, S. Abdullah and M. Rusop: Mat. Research Inn. Vol. 13 (3) (2009), p.153.

DOI: 10.1179/143307509x437482

Google Scholar

[11] K.B. Sundaram and A. Khan, Thin Solid Films Vol. 295 (1997), p.87.

Google Scholar

[12] J. Zhang and W. Que: Solar Energy Materials & Solar Cells Vol. 94 (2010), p.2181.

Google Scholar

[13] Y.J. Jiang, D.X. Zhang, H.K. Cai, K. Tao, Y. Xue, Y.P. Sui, L.S. Wang, J.F. Zhao, and J. Wang: J. Physc.: Conference Series Vol. 152 (2009), p.012030.

Google Scholar

[14] L.P. Peng, L. Fang, X.F. Yang, and Y.J. Li: J. Alloys Compd. Vol. 484 (2009), p.575.

Google Scholar

[15] J. Pankove, Optical Processes in Semiconductors, Dover Publications, New York, (1971).

Google Scholar

[16] O. Lupan, T. Pauporte´, L. Chow, B. Viana, F. Pelle´, L.K. Ono, B. Roldan Cuenya, and H. Heinrich: Appl. Surface Sci. Vol. 256 (2010), p.1895.

Google Scholar

[17] T. Tsuji and M. Hirohashi: Appl. Surface Sci. Vol. 157 (2000), p.47.

Google Scholar