Characterization of SnO2 Nanoparticles Prepared by Two Different Wet Chemistry Methods

Article Preview

Abstract:

Effects of synthesis techniques, namely sol gel method and direct growth method on the nanostructural and optical properties of SnO2 have been investigated. The XRD results confirmed that both samples are single phase SnO2. The crystallite size of SnO2 prepared by sol-gel and direct growth method were approximately 10 nm and 15 nm respectively. The FE-SEM micrographs displayed that SnO2 nanoparticles prepared by sol gel method exhibited a round shape with approximate particle size of 10 nm while the direct growth method produced SnO2 nanorod with length and width of 570 nm and 55 nm respectively. The direct Eg for both SnO2 nanospheres and nanorods are 3.98 eV and 3.94 eV respectively, Due to quantum confinement effect, both nanomaterials exhibited strong blue shift compared to bulk material with Eg of 3.6 eV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

322-326

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Boshta, F.A. Mahmoud and M.H. Sayed: Journal of Ovonic Research Vol. 6 (2010), p.93 – 98.

Google Scholar

[2] M. Gaidi, A. Hajjaji, M.A. Khakani, B. Chenevier, M. Labeau and B. Bessaïs: Japanese Journal of Applied Physics Vol. 48 (2009), p.072501.

DOI: 10.1143/jjap.48.072501

Google Scholar

[3] C. Drake and S. Seal: Applied Physics Letters Vol. 90 (2007), p.233117.

Google Scholar

[4] S. Sarmah and A. Kumar: Indian Journal of Physics Vol. 84 (2010), pp.1211-1221.

Google Scholar

[5] T. Diana, K.N. Devi and H.N. Sarma: Indian Journal of Physics Vol. 84 (2010), pp.687-691.

Google Scholar

[6] S. Gnanam and V. Rajendran: Digest Journal of Nanomaterials and Biostructures Vol. 5 (2010), pp.699-704.

Google Scholar

[7] O. Lupan, L. Chow, G. Chai, H. Heinrich, S. Park and A. Schulte: Physica E Vol. 41 (2009), pp.533-536.

Google Scholar

[8] S.P. Mondal, S.K. Ray, J. Ravichandran and I Manna: Bulletin of Material Science Vol. 33 (2010), p.357–364.

Google Scholar

[9] X. Yang and L. Wang: Materials Letters Vol. 61 (2007), p.3705.

Google Scholar

[10] Z.L. Wang: Advanced Materials Vol. 15 (2003), pp.432-436.

Google Scholar

[11] X. Jiaqianga, W. Dinga, Q. Lipenga, Y. Weijunc, P. Qingyia: Sensors and Actuators B Vol. 137 (2009), pp.490-495.

Google Scholar

[12] Y. Chen, J. Zhu, X. Zhu, G. Ma, Z. Liu, N. Min: Materials Science and Engineering Vol. B99 (2003), pp.52-55.

Google Scholar

[13] Q. Trung Khuc, X.H. Vu, D.V. Dang and D.C. Nguyen: Adv. Nat. Sci.: Journal of Nanoscience and Nanotechnology Vol. 1 (2010), p.025010.

Google Scholar

[14] L. Tan, L. Wang, and Y. Wang: Journal of Nanomaterials Vol. 2011 (2011), p.529874.

Google Scholar

[15] K. Anandan and V. Rajendran: Journal of Non-Oxide Glasses Vol. 2, (2010), pp.83-89.

Google Scholar

[16] A.P. Caricato, A. Luches and R. Rella: Sensors Vol. 9 (2009), pp.2682-2696.

Google Scholar

[17] M.M. Mohagheghi, N. Shahtahmasebia, M.R. Alinejad, A. Youssefi and M.S. Saremi: Physica B Vol. 403 (2008), pp.2431-2437.

Google Scholar