Optical and Structural Properties of Nanocrystalline CdS Thin Films Grown by Chemical Bath Deposition

Article Preview

Abstract:

Nanocrystalline cadmium sulfide thin films are prepared using chemical bath deposition (CBD) technique in aqueous alkaline bath at 60 °C and their subsequent condensation on glass substrates. Effects of annealing on structural, morphological and optical properties are presented and discussed. The best annealing temperature for CBD grown CdS films is found to be 350 °C from optical properties. The optical and structural properties of CdS films are found to be sensitive to annealing temperature and are described in terms of XRD, SEM, transmission spectra and optical studies. The structural parameters such as crystallite size have been evaluated through XRD while SEM micrographs exhibit ordering of grains upon annealing. The transmission spectra shift towards higher wavelength upon annealing indicating increase in crystallinity. Annealing over 350 °C is found to degrade the external structure and optical properties of the film.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-69

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.G. Kim, N. Teratani, M. Nakayama: J. Appl. Phys. 44 (2002), p.5064.

Google Scholar

[2] A. Ishijuni and Y. Kanemitsu: Adv. Mater. 18 (2006), p.1083.

Google Scholar

[3] A. Missaoui, L. Beji, M. Gaidi, A. Bouazizi: Lab. Phys. et Chimie des Interfaces, Monastir , ICTON Mediterranean Winter Conference, 2007. ICTON-MW 2007 p.1 – 2.

DOI: 10.1109/ictonmw.2007.4446972

Google Scholar

[4] Q. Xiao, C. Xiao and L. Ouyang: J. Lum.: 128 (12) (2008), p. (1942).

Google Scholar

[5] M.A. Mahdi, S.J. Kasem, J.J. Hassen, A.A. Swadi and S.K.J.A. Ani: Int. J. Nanoelectronics and Materials 2 (2009), p.163.

Google Scholar

[5] R.S. Mane and C.D. Lokhande: Mater. Chem. and Phys. 65 (2000), p.1.

Google Scholar

[6] L. Zhou Y. Xue and J. Li: J. Env. Sc. 21 (2009), p. S76.

Google Scholar

[7] K.U. Isah, N. Hariharan and A. Oberafo: Leonardo J. Sci. 7(12) (2008), p.111.

Google Scholar

[8] E.C. Subba Rao, D. Chakravorty, M.F. Merriem, V. Raghavan and L.K. Singhal: Experiments in Materials Science, (1972) Mc-Graw Hill Book Company, Newyork p.72.

Google Scholar

[9] S. Li, M.A. Hesham, Soliman, J. Zhou, S. Muhammet, M. Muhammed, D. Platzek, P. Ziolkowski and E. Müller: Chem. Mater. 20 (2008), p.4403.

Google Scholar

[10] A.V. Feitosa, M.A.R. Miranda, J.M. Sasaki and M.A. Arujo-Silva: Braz. J. Phys. 34(2B) (2004), p.656.

Google Scholar

[11] A.U. Ubale, V.S. Sangawar and D.K. Kulkarni: Bull. Matter Sc. 30(2) (2007), p.147.

Google Scholar

[12] S. Sadhu and A. Patra: J. Chem. Sci. 120(6) (2008), p.557.

Google Scholar

[13] D. Lincot, R. Oraga and M. Forment: Philos. Mag. B 68 (1993), p.185.

Google Scholar

[14] Y. Ding and J. Erlebacher: J. Am. Che. Soc. 125(26) (2003), p.7773.

Google Scholar

[15] S. Mandal, H. Mallik, A. Dhar and S. K. Ray: Phys. Semicond. Dev. (2007), p.859.

Google Scholar

[16] E. Saunders, I. Popv and U. Banin: J. Phys. Chem. B110 (2006), p.25421.

Google Scholar

[17] J. Schroeder, P.D. Persans and T.G. Bilodeau: Physical Review B43 (1991), p.12580.

Google Scholar

[18] N. Pinna, K. Weiss, J. Urban and M. Pileni: Adv. Mater. (Weinhen, Ger. ) 13 (2001), p.261.

Google Scholar