Comparison of Cobalt Based Catalysts Supported on MWCNT and SBA-15 Supporters for Fischer-Tropsch Synthesis by Using Autoclave Type Reactor

Article Preview

Abstract:

10 and 40 wt% Co/Multiwall Carbon Nanotubes (MWCNT) and 10 and 40 wt% Co/Santa Barbara Amorphous-15 (SBA-15) catalysts were prepared via incipient wetness impregnation method. It was characterized by Scanning Electron Microscopy, BET, X-ray Diffractometry (XRD), Transmission Electron Microscopy (TEM), Temperature-Programmed Reduction and H2 Desorption. A 200 ml hastelloy autoclave reactor was implemented to see the performance of the catalysts. It was observed that the performance of 40 wt% Co/SBA-15 was higher that other catalysts in terms of production of longer chain paraffins.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

70-75

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.P. Steynberg and M.E. Dry: Studies in surface science and catalysis 152 (2004), pp.558-583.

Google Scholar

[2] A.Y. Khodakov, W. Chu and P. Fongarland: Chem. Rev. 107 (2007), pp.1692-1744.

Google Scholar

[3] M.E. Dry: Catalysis today 71 (2002), pp.227-241.

Google Scholar

[4] H. Schulz: Applied Catalysis A: General 186 (1999), pp.3-12.

Google Scholar

[5] Sasol GTL Brochure (www. sasol. com).

Google Scholar

[6] A.N. Stranges, Germany's Synthetic Fuel industry 1927-45, Presentation at AIChE 2003, New Orleans, LA. (www. fischertropsch. org).

Google Scholar

[7] A.P. Steynberg and M.E. Dry: Studies in surface science and catalysis 152 (2004), p.22.

Google Scholar

[8] R.J. Farrauto and C.H. Bartholomew: Blackie academic & Professional (1998), pp.59-64.

Google Scholar

[9] M. Zaman, A. Khodadi and Y. Mortazavi: Fuel processing technology 90 (2009), pp.1214-1219.

Google Scholar

[10] G. Jacobs, T.K. Das, Y. Zhang, J. Li, G. Racoillet and B.H. Davis: Applied Catalysis A: General Vol. 233(1) (2002), pp.263-281.

Google Scholar

[11] A. Kogelbauer, J.G. Goodwin Jr and R. Oukaci: J. Catal 160(0310) (1996), pp.125-133.

Google Scholar

[12] W. Li, C. Liang, W. Zhou, J. Qui, Z. Zhou, G. Sun and Q. Xin: J. Phys. Chem. B107 (2003), pp.6292-6299.

Google Scholar

[13] C. Robert, Reuel, H. Calvin and Bartholomew: J. Catal. Vol. 85(1) (1984), pp.78-88.

Google Scholar

[14] D. Yin, W. Li, W. Yang, H. Xiang, Y. Sun, B. Zhong, S. Peng: Micropor. Mesopor. Mater. 47 (2001), p.15.

Google Scholar

[15] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G. D Stucky: Science 279 (1998), p.548.

Google Scholar

[16] Y. Wang, M. Noguchi, Y. Takahashi, Y. Ohtsuka: Catal. Today 68 (2001), pp.3-9.

Google Scholar

[17] C. Perego and P. Villa: Catalysts Today 34 (1997), pp.281-305.

Google Scholar

[18] S. A Hosseini, A. Taeb, F Feyzi, F. Yaripour Fischer Tropsch synthesis over Ru promoted Co/ϒ-Al2O3" catalysts in CSTR.

DOI: 10.1016/j.catcom.2003.11.013

Google Scholar

[19] A. Tavasoli, R. Malek Abbaslou, M. Trepanier, A. K. Dalai Fischer-Tropsch Synthesis over cobalt catalyst supported on carbon nanotubes in a slurry reactor.

DOI: 10.1016/j.apcata.2008.04.030

Google Scholar

[20] M. Nurrunnabi, K. Murata, K. Obake, M. Inaba, I. Takahara Performance and characterisation of Ru/Al2O3 and Ru/SiO2 catalysts modified with Mn for Fischer-Tropsch synthesis.

DOI: 10.1201/9781420062571.ch5

Google Scholar