Characterization of Urea versus HMTA in the Preparation of Zinc Oxide Nanostructures by Solution-Immersion Method Grown on Gold-Seeded Silicon Substrate

Article Preview

Abstract:

Zinc oxide (ZnO) nanostructures prepared by immersion method were successfully grown on gold-seeded silicon substrate using Zinc nitrate hexahydrate (Zn (NO3)2.6H2O) as a precursor, separately stabilized with non-toxic urea (CH4N2O) and hexamethylene tetraamine (HMTA). The effect of changing the stabilizer of ZnO solution on the crystal structure, morphology and photoluminescence properties of the resultant ZnO is investigated. X-ray diffraction of the synthesized ZnO shows hexagonal zincite structure. The morphology of the ZnO was characterized using Field Emission Scanning Electron Microscope (FESEM). The growth of ZnO using urea as stabilizer shows clusters of ZnO nanoflower with serrated broad petals were interestingly formed. ZnO in HMTA showed growth of nanorods. The structures has high surface area, is a potential metal oxide nanostructures to be develop for optoelectronic devices and chemical sensors. The formation of ZnO nanostructures is found to be significantly affected by the stabilizer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-49

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Kishwar, K. ul Hasan, N.H. Alvi, P. Klason, O. Nur and M. Willander: Superlattices and Microstructures. 49 (2011), pp.32-42.

DOI: 10.1016/j.spmi.2010.10.004

Google Scholar

[2] M.H. Mamat, M.Z. Sahdan, Z. Khusaimi, A.Z. Ahmed, S. Abdullah, M. Rusop, Optical Materials. 32 696-699.

DOI: 10.1016/j.optmat.2009.12.005

Google Scholar

[3] D. Barreca, D. Bekermann, E. Comini, A. Devi, R.A. Fischer, A. Gasparotto, C. Maccato, G. Sberveglieri and E. Tondello: Sensors and Actuators B: Chemical. 149 (2010), pp.1-7.

DOI: 10.1016/j.snb.2010.06.048

Google Scholar

[4] L. Lu, R. Li, K. Fan and T. Peng: Solar Energy. 84 (2010), pp.844-853.

Google Scholar

[5] C. Liu, Y. Masuda, Y. Wu and O. Takai: Thin Solid Films. 503 (2006), p.110 – 114.

Google Scholar

[6] S. Wei, J. Lian, H. Wu: Materials Characterization 61 (2010), pp.1239-1244.

Google Scholar

[7] T. Tani, L. Madler and S.E. Pratsinis: J. of Nanoparticle Research 4 (2002), p.337–343.

Google Scholar

[8] S. Music, S. Popovic, M. Maljkovic and Dragcˇevic: J. Alloys Compd. 347 (2002), p.324–332.

Google Scholar

[9] P. Singh, A. Kumar, A. Kaushal, D. Kaur, A. Pandey and R.N. Goyal: Bull. Mater. Sci. 31 (2008), p.573–577.

Google Scholar

[10] M. Copuroglu, L.H.K. Koh, S. O'Brien and G.M. Crean: J. Sol-Gel Sci. Technol. 52 (2009), p.432–438.

Google Scholar

[11] M.H. Mamat, Z. Khusaimi, M.Z. Musa, M.Z. Sahdan and M. Rusop: Materials Lett. 64 (2010), pp.1211-1214.

DOI: 10.1016/j.matlet.2010.02.053

Google Scholar

[12] Z. Khusaimi, S. Amizam, M.H. Mamat, M.Z. Sahdan, M.K. Ahmad, N. Abdullah and M. Rusop: Chemistry 40 (2010), p.190–194.

DOI: 10.1080/15533171003629147

Google Scholar

[13] G.S. Wua, Y.L. Zhuang, Z.Q. Lin, X.Y. Yuan, T. Xie and L.D. Zhang: Physica E. 31 (2006), pp.5-8.

Google Scholar

[14] S.G. Ansari, R. Wahab, Z.A. Ansari, Y.S. Kim, G. Khang, A. Al-Hajry and H.S. Shin: Chemical 137 (2009), pp.566-573.

DOI: 10.1016/j.snb.2009.01.018

Google Scholar

[15] Y. Liu, J. e. Zhou, A. Larbot and M. Persin: J. Mater. Processing Technol. 189 (2007), p.379–383.

Google Scholar

[16] Q. Ahsanulhaq, A. Umar and Y.B. Hahn: Nanotechnology. 18 (2007), p.115603.

Google Scholar

[17] M.H. Mamat, Z. Khusaimi, M.Z. Musa, M.Z. Sahdan and M. Rusop: Mat. Lett. 64 (2010), p.1211–1214.

Google Scholar

[18] Y.W. Wang, L.D. Zhang, G.Z. Wang, X.S. Peng, Z.Q. Chu and C.H. Liang: J. of Crystal Growth 234 (2002), p.171–175.

Google Scholar