Inactivation of Algae with Multi-Needle Gas-Liquid Hybrid Discharge Reactor by Introducing Oxygen and Air

Article Preview

Abstract:

In this paper, certain investigations were performed in the following aspects: analysis of optical emission spectra which is used for the identification of ˙OH, ˙H, ˙O, H2O2 and O3 on the inactivation of algae by observing the gas and liquid phase compositions, the optimal parameters such as treatment time, pulse peak voltage, and pulse frequency. Each experiment was carried out by introducing two difference gases, oxygen or air, separately above the liquid in the reactor. The results showed that the inactivation rate of algae reached 100% in the case of oxygen bubbling into the Chlorella spp. contaminated water for 7 min and the Chrysophyta spp. for 5 min. It took much longer time in the case of air bubbling that took 10 min for Chlorella spp. and 7 min for Chrysophyta spp.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

389-395

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Andrew N. Cohen and James T. Carlton, Accelerating invasion rate in a highly invaded estuary, Science, vol. 279, no. 5350, p.555–558, (1998).

DOI: 10.1126/science.279.5350.555

Google Scholar

[2] Carlton J. T., "Introduced Species in US Coastal Waters: Environmental Impacts and Management priorities (Arlington, VA: Pew Oceans Commission), (2001).

Google Scholar

[3] Bax N, Williamson A, Aguero M, Gonzalez E and Geeves W, Marine invasive alien species: a threat to global biodiversity, Mar. Policy, vol. 27 p.313–23, (2003).

DOI: 10.1016/s0308-597x(03)00041-1

Google Scholar

[4] Peter M. Vitousek, Harold A. Mooney, Jane Lubchenco, and Jerry M. Melillo, Human domination of earth's ecosystems, Science, vol. 227, p.494–499, (1997).

DOI: 10.1126/science.277.5325.494

Google Scholar

[5] Ruiz G. M., Miller A. W., Lion K., Steves B., Arnwine A. and Collinetti E., First biennial Report of the National Ballast Information Clearhouse Status and Trends of Ballast Water Management in the United States (MD, USA: Smithsonian Environmental Research Center), (2001).

DOI: 10.5479/data.serc.nbic

Google Scholar

[6] Gray D K, Johengen T H, Reid D F and MacIsaac H J, Efficacy of open-ocean ballast water exchange as a means of preventing invertebrate invasions between freshwater ports Limnol, Ocean Ogr., vol. 52, p.2386–2397, (2007).

DOI: 10.4319/lo.2007.52.6.2386

Google Scholar

[7] McCollin T, Shanks A M and Dunn J., The efficiency of regional ballast water exchange: changes in phytoplankton abundance and diversity Harmful Algae, vol. 6, p.531–546, (2007).

DOI: 10.1016/j.hal.2006.04.015

Google Scholar

[8] Tang Z J, Michael A B and Xie Y F., Crumb rubber filtration: a potential technology for ballast water treatment, Mar. Environ. Res, vol, 61, p.410–423, (2006).

DOI: 10.1016/j.marenvres.2005.06.003

Google Scholar

[9] Rigby G R, Hallegraeff G M and Sutton C. Novel ballast water heating technique offers cost-effective treatment to reduce the risk of global transport of harmful marine organisms, Mar. Ecol. Prog. Ser., vol. 191, p.289–93, (1999).

DOI: 10.3354/meps191289

Google Scholar

[10] Rigby G. R, Hallegraeff G. M. and Taylor A. H., Does heat offer a superior ballast water treatment option?, J. Mar. Environ. Eng., vol. 7, p.217–30, (2004).

Google Scholar

[11] Waite T. D. et. al, Removal of natural populations of marine plankton by a large-scale ballast water treatment system, Mar. Ecol. Prog. Ser., vol. 258, p.51–63, (2003).

DOI: 10.3354/meps258051

Google Scholar

[12] Tamburri M. N., Kerstin W. and Masayasu M., Ballast water deoxygenation can prevent aquatic introductions while reducing ship corrosion, Biol. Conservation, vol. 103, p.331–341, (2002).

DOI: 10.1016/s0006-3207(01)00144-6

Google Scholar

[13] McCollin T., Quilez-Badia G., Josefsen K. D., Gill M. E., Mesbahi E. and Frid C. L. J., Ship board testing of a deoxygenation ballast water treatment, Mar. Pollut. Bull. vol. 54, p.1170–1178, (2007).

DOI: 10.1016/j.marpolbul.2007.04.013

Google Scholar

[14] Perrins J. C., Cooper W. J., (Hans) van Leeuwen J. and Herwig R. P., Ozonation of seawater from different locations: formation and decay of total residual oxidant—implications for ballast water treatment, Mar. Pollut. Bull. vol. 52, p.1023–1033, (2006).

DOI: 10.1016/j.marpolbul.2006.01.007

Google Scholar

[15] Oemcke D. and (Hans) van Leeuwen J., Ozonation of the marine dinoflagellate alga Amphidinium trochoidea—implications for ballast water disinfection, Water Res., vol. 39 p.5119–5125, (2005).

DOI: 10.1016/j.watres.2005.09.024

Google Scholar

[16] Oemcke D. and (Hans) van Leeuwen J., Seawater ozonation of Bacillus subtilis spores: implications for the use of ozone in ballast water treatment, Ozone: Sci. Eng., vol. 26, p.389–401, (2004).

DOI: 10.1080/01919510490482241

Google Scholar

[17] D. A. Wright, R. Dawson, S. J. Cutler, H. G. Cutler, C. E. Orano-Dawson and E. Graneli, Naphthoquinones as broad spectrum biocides for treatment of ship's ballast water: toxicity to phytoplankton and bacteria, Water Res., vol. 41, p.1294–1302, (2007).

DOI: 10.1016/j.watres.2006.11.051

Google Scholar

[18] M. Faimali, F. Garaventa, E. Chelossi, V. Piazza, O. D. Saracino, F. Rubino, G. L. Mariottini. and L. Pane, A new photodegradable molecule as a low impact ballast water biocide: efficacy screening on marine organisms from different trophic levels, Mar. Biol., vol. 149, p.7–16, (2006).

DOI: 10.1007/s00227-005-0207-y

Google Scholar

[19] Gregg M. D. and Hallegraeff G. M., Efficacy of three commercially vailable ballast water biocides against vegetative microalgae, dinoflagellate cysts and bacteria, Harmful Algae, vol. 6, p.567–584, (2007).

DOI: 10.1016/j.hal.2006.08.009

Google Scholar

[20] Chelossi E. and Faimali M., Comparative assessment of antimicrobial efficacy of new potential biocides for treatment of cooling and ballast waters, Sci. Total Environ., vol. 356, p.1–10, (2006).

DOI: 10.1016/j.scitotenv.2005.03.018

Google Scholar

[21] Sato M., Tokita K., Sadakata M., Sakai T., and Nakanishi K., Sterilization of microorganisms by a high-voltage, pulsed discharge under water, Int. Chem. Eng. vol. 30(4), p.695 – 698, (1990).

DOI: 10.1252/kakoronbunshu.14.556

Google Scholar

[22] T. Grahl and H. Märkl, Killing of microorganisms by pulsed electric fields, Applied microbiology and biotechnology, vol. 45, PP. 148-157, (1996).

DOI: 10.1007/s002530050663

Google Scholar

[23] Sale A.J.H. and Hamilton W.A., Effect of high electric fields on microorganisms, Biochem. et Biophys. Acta, vol. 148, p.781, (1968).

Google Scholar

[24] Sakurauchi Y. and Kondo E., Lethal effect of high electric fields on microorganisms, Nippon Nogei Kagaku Kaishi, vol. 54, pp.837-844, (1980).

Google Scholar

[25] S. E. Gilliland and M. L. Speck, Inactivation of microorganisms by electrohydraulic shock, Appl Environ Microbiol., vol. 15, pp.1031-1037, (1967).

DOI: 10.1128/am.15.5.1031-1037.1967

Google Scholar

[26] Chih-Wei Chen, et. al, Influence of pH on inactivation of aquatic microorganism with a gas- liquid pulsed electrical discharge, Journal of electrostatics, vol. 67, pp.703-708, (2009).

DOI: 10.1016/j.elstat.2009.03.008

Google Scholar

[27] Nyein Nyein Aye, Sun Bing, Xiaomei Zhu, Zhiying Gao, Masayuki Sato, Inactivation of algae in ballast water with multi-needle gas-liquid hybrid discharge reactor, ESIAT 2010 International conference, vol. 3, pp.28-31, (2010).

DOI: 10.1109/esiat.2010.5568936

Google Scholar