[1]
T. B. Vinzant, C. I. Ehrman, W. S. Adney, S. R. Thomas, M. E. Himmel, (1997) Simultaneous saccharification and fermentation of pretreated hardwoods: effect of native lignin content, Appl. Biochem. Biotechnol, vol. 62, 1997, pp.99-104.
DOI: 10.1007/bf02787987
Google Scholar
[2]
V. S. Chang, M. T. Holtzapple, Fundamental factors affecting biomass enzymatic reactivity, Appl. Biochem. Biotechnol, vol. 84/86, 2000, pp.5-37.
DOI: 10.1385/abab:84-86:1-9:5
Google Scholar
[3]
D. N. Thompson, H. C. Chen, H. E. Grethlein, Comparison of pretreatment methods on the basis of available surface area,. Bioresource Technol. Vol. 39, 1992, pp.155-163.
DOI: 10.1016/0960-8524(92)90135-k
Google Scholar
[4]
C. E. Wyman, B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, Y.Y. Lee, Coordinated development of leading biomass pretreatment technologies, Bioresour. Technol, vol. 96, 2005, p.1959-(1966).
DOI: 10.1016/j.biortech.2005.01.010
Google Scholar
[5]
P. Kumar, D. M. Barrett, M. J. Delwiche, P. Stroeve, Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production, Ind. Eng. Chem. Res, vol. 48, 2009, p.3713–3729.
DOI: 10.1021/ie801542g
Google Scholar
[6]
S. I. Mussatto, F. Marcela, A. M. F. Milagres, I. C. Roberto, Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer's spent grain, Enzyme Microb Technol, 2008, 43: 124-129.
DOI: 10.1016/j.enzmictec.2007.11.006
Google Scholar
[7]
O. Karin, B. Renata, S. Jack, Z. Guido, Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover, Bioresource Technol, vol. 98, 2007, pp.2503-2510.
DOI: 10.1016/j.biortech.2006.09.003
Google Scholar
[8]
J. D. McMillan, M. M. Newman, D. W. Templeton, A. Mohagheghi, Simultaneous saccharification and cofermentation of dilute-acid pretreated yellow poplar hardwood to ethanol using xylose-fermenting Zymomonas mogilis, Appl. Biochem. Biotechnol, vol. 77-79, 1999, pp.49-665.
DOI: 10.1007/978-1-4612-1604-9_59
Google Scholar
[9]
D. W. Noah, D. F. Joseph, J. S. Daniel, Impact of corn stover composition on hemicellulose conversion during dilute acid pretreatment and enzymatic cellulose digestibility of the pretreated solids, Bioresource Technol, vol. 101, 2010, pp.674-678.
DOI: 10.1016/j.biortech.2009.08.082
Google Scholar
[10]
S. L. Shi, F. W. He, The test and analysis of pulping and papermaking, 1st ed., Beijing: China Light Industry Press, (2003).
Google Scholar
[11]
M. Mandels, R. Andreotti, C. Roche, Measurement of saccharifying cellulase. Biotechnol. Bioeng. Symp, vol. 6, 1976, pp.21-23.
Google Scholar
[12]
C. P. Kubicek, β-glucosidase excretion by Trichoderma pseudokoningii correlation with cell wall bound β-1, 3-glucanase activities, Arch. Microbiol, vol. 132, 1982, pp.349-354.
DOI: 10.1007/bf00413388
Google Scholar
[13]
L. U. L. Tan, E. K. C. Yu, G. W. Louis-Seize, J. W. Saddler, Inexpensive, rapid procedure for bulk purification of cellulase-free β-1, 4-D-xylanase for high specific activity, Biotechnol. Bioeng, vol. 30, 1987, pp.96-106.
DOI: 10.1002/bit.260300114
Google Scholar
[14]
G. L Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem, vol. 31, 1959, pp.426-428.
DOI: 10.1021/ac60147a030
Google Scholar
[15]
J. Wan, W. Yan, X. Qing, Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp, Bioresource Technol, vol. 101, 2010, pp.4577-4583.
DOI: 10.1016/j.biortech.2010.01.026
Google Scholar