Fabrication of Hydroxyapatite and Observation of Nanoparticles Entering into Cells

Article Preview

Abstract:

Unambiguous and thorough knowledge of interactions between cells and nanoparticles was necessary for applications of nanoparticle in living system. In this report we presented systematic studies of fabrication of inorganic nanoparticles and the application of entering into cells. Size distribution, zeta potential and transmission electron microscope (TEM) were performed to characterize the nanoparticles structure and define the mechanism by which nanoparticles are capable of entering into cells. The study revealed nanoparticles can entered cells via penetrating through the lipophilic bilayer, which should be paid attention to for inspirational value insome application researches and will be harmful in other cases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

451-455

Citation:

Online since:

October 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Chen, J.M. Mccrate, J.C. Lee and H. Li, Nanotechnology, 10 (2011) 105708.

Google Scholar

[2] T.H. Chung, S.H. Wu, M. Yao, C.W. Lu, Y.S. Lin, Y. Hung, C.Y. Mou, Y.C. Chen and D.M. Huang, Biomaterials, 19 (2007) 2959.

Google Scholar

[3] D.A. Wahl and J.T. Czernuszka, Eur Cell Mater, (2006) 43.

Google Scholar

[4] I. Ono, T. Yamashita, H.Y. Jin, Y. Ito, H. Hamada, Y. Akasaka, M. Nakasu, T. Ogawa and K. Jimbow, Biomaterials, 19 (2004) 4709.

DOI: 10.1016/j.biomaterials.2003.11.038

Google Scholar

[5] X. Zhu, Y. Wang and J. Ye, BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2 (2003) 77.

Google Scholar

[6] G. Li, Y. Zhang, H. Zhang, J. Li and K. Wei, CHINA JOURNAL OF MODERN MEDICINE, 4 (2007) 389.

Google Scholar

[7] S. Madhavi, C. Ferraris and T.J. White, J Solid State Chem, 9 (2005) 2838.

Google Scholar

[8] K. Kandori, S. Oda, M. Fukusumi and Y. Morisada, Colloids Surf B Biointerfaces, 1 (2009) 140.

Google Scholar

[9] P. Zhu, Y. Masuda and K. Koumoto, Biomaterials, 17 (2004) 3915.

Google Scholar

[10] M. Motskin, D.M. Wright, K. Muller, N. Kyle, T.G. Gard, A.E. Porter and J.N. Skepper, Biomaterials, 19 (2009) 3307.

DOI: 10.1016/j.biomaterials.2009.02.044

Google Scholar

[11] P.N. Kumta, C. Sfeir, D.H. Lee, D. Olton and D. Choi, Acta Biomaterialia, 1 (2005) 65.

Google Scholar

[12] Y. Zhai, Y. Gao, F. Liu, Q. Zhang and G. Gao, Mater Lett, 28 (2007) 5056.

Google Scholar

[13] S.H. Teng, E.J. Lee, P. Wang and H.E. Kim, Mater Lett, 17-18 (2008) 3055.

Google Scholar

[14] A. Jordan, R. Scholz, P. Wust, H. Schirra and Others, J Magn Magn Mater, 1-3 (1999) 185.

Google Scholar

[15] S. Prijic and G. Sersa, Radiology and Oncology, 1 (2011) 1.

Google Scholar

[16] X. Chao, L. Guo, Y. Zhao, K. Hua, M. Peng, C. Chen and Y. Cui, J Drug Target, 3 (2011) 161.

Google Scholar

[17] P.H. Yang, X. Sun, J.F. Chiu, H. Sun and Q.Y. He, Bioconjug Chem, 3 (2005) 494.

Google Scholar

[18] H.Q. Mao, K. Roy, V.L. Troung-Le, K.A. Janes, K.Y. Lin, Y. Wang, J.T. August and K.W. Leong, J Control Release, 3 (2001) 399.

Google Scholar

[19] M. Lavertu, S. Methot, N. Tran-Khanh and M.D. Buschmann, Biomaterials, 27 (2006) 4815.

Google Scholar