Inverse Hall-Petch Effect of Hardness in Nanocrystalline Ta Films

Article Preview

Abstract:

Hardness and creep property of nanocrystalline Ta films were studied by nanoindentation tests. Experimental results suggested that hardness decreases with the decrement of grain size, which exhibits an inverse Hall-Petch effect. A remarkable room temperature creep behavior of nanocrystalline Ta films was revealed during indentation response. Creep stress exponent decreases with the decrement of feature scale, such as grain size and indent displacement. Grain boundary (GB) mediated process involving atomic diffusion and the emission of dislocation at GB is believed to be the dominant deformation mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 378-379)

Pages:

575-579

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.H. Fang, W.L. Li, N.R. Tao and K. Lu: Science Vol. 25 (2011), p.1587.

Google Scholar

[2] J. Schiøtz and K.W. Jacobsen: Science Vol. 301 (2003), p.1357.

Google Scholar

[3] A. Giga, Y. Kimoto, Y. Takigawa and K. Higashi: Scr. Mater. Vol. 55 (2006), p.143.

Google Scholar

[4] T.J. Rupert, D.S. Gianola, Y. Gan, K.J. Hemker: Science Vol. 326 (2009), p.1686.

Google Scholar

[5] S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, K. Han: Acta Mater. Vol. 53 (2005), p.1521.

DOI: 10.1016/j.actamat.2004.12.005

Google Scholar

[6] Z.H. Cao, H.M. Lu, X.K. Meng, A.H.W. Ngan: J. Appl. Phys. Vol. 105 (2009), p.083521.

Google Scholar

[7] S.Y. Chang, Y.S. Lee, T.K. Chang: Mater. Sci. Eng., A Vol. 423 (2006), p.52.

Google Scholar

[8] N. Wang, Z. Wang, K.T. Aust, U. Erb: Mater. Sci. Eng., A Vol. 37 (1997), p.150.

Google Scholar

[9] G.W. Nieman, J.R. Weertman, R.W. Siegel: Scr. Metall. Mater. Vol. 24 (1990), p.145.

Google Scholar

[10] R. Roumina, B. Raeisinia, R. Mahmudi: Scr. Mater. Vol. 51 (2004), p.497.

Google Scholar

[11] H. Li, A.H.W. Ngan: J. Mater. Res. Vol. 19 (2004), p.513.

Google Scholar

[12] Z.H. Cao, P.Y. Li, H.M. Lu, Y.L. Huang, Y.C. Zhou, X.K. Meng: Scr. Mater. Vol. 60 (2009), p.415.

Google Scholar

[13] K.W. Kwon, H.J. Lee, R. Sinclair: Appl. Phys. Lett. Vol. 75 (1999), p.935.

Google Scholar

[14] M. Zhang, Y.F. Zhang, P.D. Rack, M.K. Miller, T.G. Nieh: Scr. Mater. Vol. 57 (2007), p.1032.

Google Scholar

[15] H.P. Klug and L.E. Alexander: Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York 1974).

Google Scholar

[16] M. Zhang, B. Yang, J. Chu, T.G. Nieh: Scr. Mater. Vol. 54 (2003), p.1227.

Google Scholar

[17] Y.M. Wang, A.M. Hodge, P.M. Bythrow, T.W. Barbee, Jr., A.V. Hamza: Appl. Phys. Lett. Vol. 89 (2006), p.081903.

DOI: 10.1063/1.2338006

Google Scholar

[18] W.C. Oliver, G.M. Pharr: J. Mater. Res. Vol. 7 (1992), p.1564.

Google Scholar

[19] S.Y. Chang, T.K. Chang: J. Appl. Phys. Vol. 101 (2007), p.033507.

Google Scholar

[20] R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh: Acta Mater. Vol. 51 (2003), p.5159.

Google Scholar

[21] S. Ranganathan, R. Divakar, V.S. Raghunathan: Scr. Mater. Vol. 44 (2001), p.1169.

Google Scholar

[22] M.A. Meyers, A. Mishra, D.J. Benson: Prog. Mater. Sci. Vol. 51 (2006), p.427.

Google Scholar

[23] R.L. Coble: J. Appl. Phys. Vol. 34 (1963), p.1679.

Google Scholar

[24] M.A. Meyers and K.K. Chawla: Mechanical metallurgy: principles and applications (Prentice-Hall Englewood Cliffs NJ 1984).

Google Scholar

[25] D. Wolf, V. Yamakov, S.R. Phillpot, A. Mukherjee, H. Gleiter: Acta Mater. Vol. 53 (2005), p.1.

Google Scholar

[26] R.C. Hugo, H. Kung, J.R. Weertman, R. Mitra, J.A. Knapp, D.M. Follstaedt: Acta Mater. Vol. 51 (2003), p.1937.

Google Scholar

[27] P.M. Derlet, A. Hasnaoui, H. Van Swygenhoven: Scr. Mater. Vol. 49 (2003), p.629.

Google Scholar

[28] H. Van Swygenhoven, P.M. Derlet, A.G. Frøseth: Acta Mater. Vol. 54 (2006), p.1975.

Google Scholar

[29] S. Cheng, J.A. Spencer, W.W. Milligan: Acta Mater. Vol. 51 (2003), p.4505.

Google Scholar

[30] V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter: Acta Mater. Vol. 50 (2002), p.61.

Google Scholar

[31] H. Van Swygenhoven, M. Spaczer, A. Caro, D. Farkas: Phys. Rev. B Vol. 60 (1999), p.22.

Google Scholar