[1]
G. Eason, B. Noble, and I. N. Sneddon, On certain integrals of Lipschitz-Hankel type involving products of Bessel functions, Phil. Trans. Roy. Soc. London, vol. A247, p.529–551, April 1955. (references).
DOI: 10.1098/rsta.1955.0005
Google Scholar
[2]
Alef, K., Nannipieri, P. (1995): Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London.
Google Scholar
[3]
Barrena, R., Vázquez, F., Sánchez, A. (2008): Dehydrogenase activity as a method for monitoring the composting process. Bioresource Technology, 99, pp.905-908.
DOI: 10.1016/j.biortech.2007.01.027
Google Scholar
[4]
Benitez, E., Nogales, R., Elvira, C., Masciandaro, G., Ceccanti, B. (1999): Enzyme activities as indicators of the stabilization of sewage sludges composting with Eisenia foetida. Bioresource Technol, 67, pp.297-303.
DOI: 10.1016/s0960-8524(98)00117-5
Google Scholar
[5]
Castaldi, P., Garau, G., Melis, P. (2008): Maturity assessment of compost from municipal solid waste through the study of enzyme activities and water-soluble fractions. Waste Management 28, pp.534-540.
DOI: 10.1016/j.wasman.2007.02.002
Google Scholar
[6]
Li, M., Peng, X. Y., Zhao, Y. C., Ding, W. C., Cai, H. S., Liu, G. T, Wu, Z. S. (2008): Microbial inoculum with leachate recirculated cultivation for the enhancement of OFMSW composting. Journal of Hazardous Materials, 153, pp.885-891.
DOI: 10.1016/j.jhazmat.2007.09.040
Google Scholar
[7]
Ministry of Agriculture of the People's Republic of China. (2006): China's Agriculture Yearbook 2006. China Agriculture Publishing House, Beijing.
Google Scholar
[8]
Mondini, C., Fornasier, F., Sinicco, T. (2004): Enzymatic activity as a parameter for the characterization of the composting process. Soil Biol. Biochem, 36, pp.1587-1594.
DOI: 10.1016/j.soilbio.2004.07.008
Google Scholar
[9]
State Statistical Bureau, PR China. (2006): China Statistical Yearbook 2005, China Statistical, Beijing.
Google Scholar
[10]
Tiquia, S.M. (2002): Evolution of extracellular enzyme activities during manure composting. J. Appl. Microbiol, 92, pp.764-775.
DOI: 10.1046/j.1365-2672.2002.01582.x
Google Scholar
[11]
Tiquia, S. M., Wan, J. H. C., Tam, N. F. Y. (2002): Microbial population dynamics and enzyme activities during composting. Compost Science and Utilization, 10 (2), pp.150-161.
DOI: 10.1080/1065657x.2002.10702075
Google Scholar
[12]
Zhang, W. L., Wu, S. X., Ji, H. J., KOLBE, H. (2004).
Google Scholar
540 Oxygen concentration -0. 932(*) 1 -0. 935(*) -0. 947(*) -0. 881(*) -0. 668 Protease activity.
Google Scholar
984(*) -0. 935(*) 1.
Google Scholar
510 Urease activity.
Google Scholar
988(*) -0. 947(*).
Google Scholar
577 Dehydrogenase activity.
Google Scholar
936(*) -0. 881(*).
Google Scholar
455 Cellulase activity.
Google Scholar
455 1 Note: * very significant correlation (p<0. 01); * significant correlation (p<0. 05); N=6 Table2 Correlation analysis between temperature, oxygen concentration and enzyme activities (period of high temperature) Temperature Oxygen concentration Protease activity Urease activity Dehydrogenase activity Cellulase activity Temperature 1 -0. 407.
Google Scholar
807(*) Oxygen concentration -0. 407 1.
Google Scholar
362 -0. 069 -0. 484.
Google Scholar
285 Protease activity.
Google Scholar
362 1 -0. 355.
Google Scholar
823(*) Urease activity -0. 307 -0. 069 -0. 355 1 -0. 066 -0. 717 Dehydrogenase activity.
Google Scholar
957(*) -0. 484.
Google Scholar
595 -0. 066 1.
Google Scholar
372 Cellulase activity.
Google Scholar
823(*) -0. 717.
Google Scholar
372 1 Note: * very significant correlation (p<0. 01); * significant correlation (p<0. 05); N=6.
Google Scholar