A Frequency-Domain Identification Algorithm for MIMO Fractional Order Systems with Time-Delay in State

Article Preview

Abstract:

The system identification problem of Multi-Input Multi-Output fractional order systems with Time-Delay is studied. A Frequency-Domain identification algorithm is presented, which combines genetic algorithm and subspace method for fractional order systems with time-delay in state. The genetic algorithm is used to identify fractional differential order and Time-Delay parameter. And the state space model is obtained by using frequency-domain subspace method when fractional differential order and time-delay parameter are fixed. Numerical simulation results validate the proposed algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

4397-4404

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Podlubny, Fractional Differential Equations, San Diego: Acdamic Press, (1999).

Google Scholar

[2] T. Pritz, Five-parameter fractional derivative model for polymeric damping materials, Journal of Sound and Vibration, vol. 265, no. 5, 2003, pp.935-952.

DOI: 10.1016/s0022-460x(02)01530-4

Google Scholar

[3] A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Wien: Springer, (1997).

DOI: 10.1007/978-3-7091-2664-6

Google Scholar

[4] L. Dorčák, V. Lesko, I. Koštial, Identification of fractional-order dynamical systems, " 12th International Conference on Process Control and Simulation ASRTP, 96, Kosice, Slovak Republic, Volume I, pp.62-68, September 10-13, (1996).

Google Scholar

[5] D. Maiti, A. Acharya, R. Janarthanan, A. Konar, Complete identification of a dynamic fractional order system under non-ideal conditions using fractional differintegral definitions, 16th IEEE International Conference on Advanced Computing and Communication, Chennai, 2008, pp.285-292.

DOI: 10.1109/adcom.2008.4760462

Google Scholar

[6] T. Poinot, C. Trigeassou, Identification of fractional systems using an output-error technique, Nonlinear Dynamics, vol. 38, 2004, pp.133-154.

DOI: 10.1007/s11071-004-3751-y

Google Scholar

[7] M. Thomassin, R. Malti, Multivariable identification of continuous time fractional system, Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, San Diego, USA, August 30-September 2, 2009, pp.1-9.

Google Scholar

[8] Z. B. Wang, G. Y. Cao, X. J. Zhu, Identification algorithm for fractional order systems based on state space decomposition, Systmes Engineering and Electronics, vol. 26, no. 12, 2004, pp.1848-1851.

Google Scholar

[9] Y. L. Li, S. L. Yu, G. Zheng, A recursive least squares algorithm for frequency domain identification of non-integer order systems, Information and Control, vol. 36, no. 2, 2007, pp.171-175.

Google Scholar

[10] D. Valerio, J. S. Costa, Finding a fractional model from frequency and time responses, Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 4, 2010, pp.911-921.

DOI: 10.1016/j.cnsns.2009.05.014

Google Scholar

[11] T. Hartley, F. Lorenzo, Fractional-order system identification based on continuous order-distributions, Signal Processing, vol. 83, no. 11, 2003, pp.2287-2300.

DOI: 10.1016/s0165-1684(03)00182-8

Google Scholar

[12] P. Nazarian, M. Haeri, Generalization of order distribution concept use in the fractional order system identification, Signal Processing, vol. 90, no. 7, 2010, pp.2243-2252.

DOI: 10.1016/j.sigpro.2010.02.008

Google Scholar

[13] P. Nazarian, M. Haeri, M. S. Tavazoei, Identifiability of fractional order systems using input output frequency contents, ISA Transactions, vol. 49, no. 2, 2010, pp.207-214.

DOI: 10.1016/j.isatra.2009.11.007

Google Scholar

[14] H. Akçay, An insight into instrumental variable frequency-domain subspace identification, Automatica, vol. 46, no. 2, 2010, pp.375-382.

DOI: 10.1016/j.automatica.2009.11.009

Google Scholar

[15] P. V. Overschee, B. D. Moor, Continuous-time frequency domain subspace system identification, Signal Processing, vol. 52, no. 2, 1996, pp.179-194.

DOI: 10.1016/0165-1684(96)00052-7

Google Scholar

[16] R. Pintelon, Frequency-domain subspace system identification using non-parametric noise models, Automatica, vol. 38, no. 8, 2002, pp.1295-1311.

DOI: 10.1016/s0005-1098(02)00036-5

Google Scholar