[1]
Podlubny, Fractional Differential Equations, San Diego: Acdamic Press, (1999).
Google Scholar
[2]
T. Pritz, Five-parameter fractional derivative model for polymeric damping materials, Journal of Sound and Vibration, vol. 265, no. 5, 2003, pp.935-952.
DOI: 10.1016/s0022-460x(02)01530-4
Google Scholar
[3]
A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Wien: Springer, (1997).
DOI: 10.1007/978-3-7091-2664-6
Google Scholar
[4]
L. Dorčák, V. Lesko, I. Koštial, Identification of fractional-order dynamical systems, " 12th International Conference on Process Control and Simulation ASRTP, 96, Kosice, Slovak Republic, Volume I, pp.62-68, September 10-13, (1996).
Google Scholar
[5]
D. Maiti, A. Acharya, R. Janarthanan, A. Konar, Complete identification of a dynamic fractional order system under non-ideal conditions using fractional differintegral definitions, 16th IEEE International Conference on Advanced Computing and Communication, Chennai, 2008, pp.285-292.
DOI: 10.1109/adcom.2008.4760462
Google Scholar
[6]
T. Poinot, C. Trigeassou, Identification of fractional systems using an output-error technique, Nonlinear Dynamics, vol. 38, 2004, pp.133-154.
DOI: 10.1007/s11071-004-3751-y
Google Scholar
[7]
M. Thomassin, R. Malti, Multivariable identification of continuous time fractional system, Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, San Diego, USA, August 30-September 2, 2009, pp.1-9.
Google Scholar
[8]
Z. B. Wang, G. Y. Cao, X. J. Zhu, Identification algorithm for fractional order systems based on state space decomposition, Systmes Engineering and Electronics, vol. 26, no. 12, 2004, pp.1848-1851.
Google Scholar
[9]
Y. L. Li, S. L. Yu, G. Zheng, A recursive least squares algorithm for frequency domain identification of non-integer order systems, Information and Control, vol. 36, no. 2, 2007, pp.171-175.
Google Scholar
[10]
D. Valerio, J. S. Costa, Finding a fractional model from frequency and time responses, Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 4, 2010, pp.911-921.
DOI: 10.1016/j.cnsns.2009.05.014
Google Scholar
[11]
T. Hartley, F. Lorenzo, Fractional-order system identification based on continuous order-distributions, Signal Processing, vol. 83, no. 11, 2003, pp.2287-2300.
DOI: 10.1016/s0165-1684(03)00182-8
Google Scholar
[12]
P. Nazarian, M. Haeri, Generalization of order distribution concept use in the fractional order system identification, Signal Processing, vol. 90, no. 7, 2010, pp.2243-2252.
DOI: 10.1016/j.sigpro.2010.02.008
Google Scholar
[13]
P. Nazarian, M. Haeri, M. S. Tavazoei, Identifiability of fractional order systems using input output frequency contents, ISA Transactions, vol. 49, no. 2, 2010, pp.207-214.
DOI: 10.1016/j.isatra.2009.11.007
Google Scholar
[14]
H. Akçay, An insight into instrumental variable frequency-domain subspace identification, Automatica, vol. 46, no. 2, 2010, pp.375-382.
DOI: 10.1016/j.automatica.2009.11.009
Google Scholar
[15]
P. V. Overschee, B. D. Moor, Continuous-time frequency domain subspace system identification, Signal Processing, vol. 52, no. 2, 1996, pp.179-194.
DOI: 10.1016/0165-1684(96)00052-7
Google Scholar
[16]
R. Pintelon, Frequency-domain subspace system identification using non-parametric noise models, Automatica, vol. 38, no. 8, 2002, pp.1295-1311.
DOI: 10.1016/s0005-1098(02)00036-5
Google Scholar