[1]
T.T. Hartley, C.F. Lorenzo and H.K. Qammer, Chaos in a fractional order Chua's system, IEEE Trans Circ Syst–I, vol. 42, p.485–490, August (1995).
DOI: 10.1109/81.404062
Google Scholar
[2]
I. Grigorenko and E. Grigorenko, Chaotic dynamics of the fractional Lorenz system, Phys Rev Lett, vol. 91, p.034101. 1–. 4, July (2003).
DOI: 10.1103/physrevlett.96.199902
Google Scholar
[3]
C.P. Li and G.J. Peng, Chaos in Chen's system with a fractional order, Chaos, Solitons & Fractals, vol. 22, p.443–450, Oct. (2004).
DOI: 10.1016/j.chaos.2004.02.013
Google Scholar
[4]
C.G. Li and G.R. Chen, Chaos and hyperchaos in the fractional-order Rössler equations, Physica A, vol. 341, p.55–61, Oct. (2004).
DOI: 10.1016/j.physa.2004.04.113
Google Scholar
[5]
X.Y. Wang and M.J. Wang, Dynamic analysis of the fractional-order Liu system and its synchronization, Chaos, vol. 17, 033106, (2007).
DOI: 10.1063/1.2755420
Google Scholar
[6]
LM. Pecora and TL. Carrol, Synchronization in chaotic systems, Phys Rev Lett, vol. 64, p.821–824, Feb. (1990).
Google Scholar
[7]
A.E. Matouk, Dynamic analysis feedback control and synchronization of Liu dynamical system, Nonlinear Anal Theor Meth Appl, vol. 69, p.3213–3224, (2008).
DOI: 10.1016/j.na.2007.09.029
Google Scholar
[8]
Arman Kiani-B, Kia Fallahi, Naser Pariz, and Henry Leung, A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter, Communications in Nonlinear Science and Numerical Simulation, vol. 14, p.863–879, March (2009).
DOI: 10.1016/j.cnsns.2007.11.011
Google Scholar
[9]
D. Matignon, Stability results for fractional differential equations with applications to control processing, Computational Engineering in Systems and Application. Multiconference, IMACS, IEEE-SMC, Lille, France, vol. 2, p.963–968, (1996).
Google Scholar
[10]
C.P. Li and J. P Yan, The synchronization of three fractional differential systems, Chaos, Solitons & Fractals, vol. 32, p.751–757, April (2007).
DOI: 10.1016/j.chaos.2005.11.020
Google Scholar
[11]
H. Zhu, S.B. Zhou and Z.S. He, Chaos synchronization of the fractional-order Chen's system, Chaos, Solitons & Fractals, vol. 41, p.2733–2740, Sept. (2009).
DOI: 10.1016/j.chaos.2008.10.005
Google Scholar
[12]
X.Y. Wang and J.M. Song, Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control, Commun Nonlinear Sci Numer Simulat, vol. 14, p.3351–3357, August (2009).
DOI: 10.1016/j.cnsns.2009.01.010
Google Scholar
[13]
X.Y. Wang, Y.J. He and M. J, Wang. Chaos control of a fractional order modified coupled dynamos system, Nonlinear Analysis, vol. 71, p.6126–6134, Dec. (2009).
DOI: 10.1016/j.na.2009.06.065
Google Scholar
[14]
Sara Dadras and Hamid Reza Moneni, Control of a fractional-order economical system via sliding mode, Physica A, vol. 389, p.24342442, June (2010).
Google Scholar
[15]
A.E. Matouk, Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol-Duffing circuit, Commun Nonlinear Sci Numer Simulat, vol. 16, p.975–986, Feb. 2011, doi: 10. 1016/j. cnsns. 2010. 04. 027.
DOI: 10.1016/j.cnsns.2010.04.027
Google Scholar
[16]
A. Arneodo, P. Coullet, E. Spiegel and C. Tresser, Asymptotic chaos, Phys D, vol. 14, p.327–347, (1985).
DOI: 10.1016/0167-2789(85)90093-4
Google Scholar
[17]
S.M. Jiang, L.X. Tian and X.D. Wang, Control of Arneodo chaotic system, Journal of Jiangsu University, vol. 26, p.492–495, (2005).
Google Scholar
[18]
J.G. Lu, Chaotic dynamics and synchronization of fractional-order Arneodo's systems, Chaos, Solitons & Fractals, vol. 26, p.1125–1133, Nov. (2005).
DOI: 10.1016/j.chaos.2005.02.023
Google Scholar
[19]
M. Caputo, Linear models of dissipation whose Q is almost frequency independent, The Geophysical Journal of the Royal Astronomical Society, vol. 13, p.529–539, April (1967).
DOI: 10.1111/j.1365-246x.1967.tb02303.x
Google Scholar
[20]
E. Ahmed, A.M.A. El-Sayed and Hala A.A. El-Saka, On some Routh- Hurwitz conditions for fractional order differential equations and their applications in Lorenz, , Chua and Chen systems, Phys Let A, vol. 358, p.1–4, Oct. (2006).
DOI: 10.1016/j.physleta.2006.04.087
Google Scholar
[21]
E. Ahmed, A.M.A. El-Sayed and Hala A.A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator- prey and rabies models, Journal of Mathematical Analysis and Applications, vol. 325, p.542–553, Jan. (2007).
DOI: 10.1016/j.jmaa.2006.01.087
Google Scholar
[22]
K. Diethelm, An algorithm for the numerical solution of differential equations of fractional order, Electron Trans Numer Anal, vol. 5, p.1–6, March (1997).
Google Scholar
[23]
K. Diethelm and Neville J. Ford, Analysis of fraction differential equations, J Math Anal Appl, vol. 265, p.229–248, Jan. (2002).
Google Scholar
[24]
K. Diethelm, Neville J. Ford and Alan D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn, vol. 29, p.3–22, (2002).
Google Scholar
[25]
K. Diethelm and Alan D. Freed, The FracPECE subroutine for the numerical solution of differential equations of fractional order, In: Heinzel S, Plesser T, editors. Forschung und wissenschaftliches Rechnen. Göttingen: Gesellschaft für wissenschaftliches Datenverarbeitung; p.57.
Google Scholar