Control of a Fractional-Order Arneodo System

Article Preview

Abstract:

In this work, stability analysis of the Fractional-Order Arneodo system is studied by using the fractional Routh-Hurwitz criteria. Furthermore, the fractional Routh-Hurwitz conditions are used to control chaos in the proposed fractional-order system to its equilibria. Based on the fractional Routh-Hurwitz conditions and using specific choice of linear feedback controllers, it is shown that the Arneodo system is controlled to its equilibrium points. Numerical results show the effectiveness of the theoretical analysis.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

4405-4412

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.T. Hartley, C.F. Lorenzo and H.K. Qammer, Chaos in a fractional order Chua's system, IEEE Trans Circ Syst–I, vol. 42, p.485–490, August (1995).

DOI: 10.1109/81.404062

Google Scholar

[2] I. Grigorenko and E. Grigorenko, Chaotic dynamics of the fractional Lorenz system, Phys Rev Lett, vol. 91, p.034101. 1–. 4, July (2003).

DOI: 10.1103/physrevlett.96.199902

Google Scholar

[3] C.P. Li and G.J. Peng, Chaos in Chen's system with a fractional order, Chaos, Solitons & Fractals, vol. 22, p.443–450, Oct. (2004).

DOI: 10.1016/j.chaos.2004.02.013

Google Scholar

[4] C.G. Li and G.R. Chen, Chaos and hyperchaos in the fractional-order Rössler equations, Physica A, vol. 341, p.55–61, Oct. (2004).

DOI: 10.1016/j.physa.2004.04.113

Google Scholar

[5] X.Y. Wang and M.J. Wang, Dynamic analysis of the fractional-order Liu system and its synchronization, Chaos, vol. 17, 033106, (2007).

DOI: 10.1063/1.2755420

Google Scholar

[6] LM. Pecora and TL. Carrol, Synchronization in chaotic systems, Phys Rev Lett, vol. 64, p.821–824, Feb. (1990).

Google Scholar

[7] A.E. Matouk, Dynamic analysis feedback control and synchronization of Liu dynamical system, Nonlinear Anal Theor Meth Appl, vol. 69, p.3213–3224, (2008).

DOI: 10.1016/j.na.2007.09.029

Google Scholar

[8] Arman Kiani-B, Kia Fallahi, Naser Pariz, and Henry Leung, A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter, Communications in Nonlinear Science and Numerical Simulation, vol. 14, p.863–879, March (2009).

DOI: 10.1016/j.cnsns.2007.11.011

Google Scholar

[9] D. Matignon, Stability results for fractional differential equations with applications to control processing, Computational Engineering in Systems and Application. Multiconference, IMACS, IEEE-SMC, Lille, France, vol. 2, p.963–968, (1996).

Google Scholar

[10] C.P. Li and J. P Yan, The synchronization of three fractional differential systems, Chaos, Solitons & Fractals, vol. 32, p.751–757, April (2007).

DOI: 10.1016/j.chaos.2005.11.020

Google Scholar

[11] H. Zhu, S.B. Zhou and Z.S. He, Chaos synchronization of the fractional-order Chen's system, Chaos, Solitons & Fractals, vol. 41, p.2733–2740, Sept. (2009).

DOI: 10.1016/j.chaos.2008.10.005

Google Scholar

[12] X.Y. Wang and J.M. Song, Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control, Commun Nonlinear Sci Numer Simulat, vol. 14, p.3351–3357, August (2009).

DOI: 10.1016/j.cnsns.2009.01.010

Google Scholar

[13] X.Y. Wang, Y.J. He and M. J, Wang. Chaos control of a fractional order modified coupled dynamos system, Nonlinear Analysis, vol. 71, p.6126–6134, Dec. (2009).

DOI: 10.1016/j.na.2009.06.065

Google Scholar

[14] Sara Dadras and Hamid Reza Moneni, Control of a fractional-order economical system via sliding mode, Physica A, vol. 389, p.24342442, June (2010).

Google Scholar

[15] A.E. Matouk, Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol-Duffing circuit, Commun Nonlinear Sci Numer Simulat, vol. 16, p.975–986, Feb. 2011, doi: 10. 1016/j. cnsns. 2010. 04. 027.

DOI: 10.1016/j.cnsns.2010.04.027

Google Scholar

[16] A. Arneodo, P. Coullet, E. Spiegel and C. Tresser, Asymptotic chaos, Phys D, vol. 14, p.327–347, (1985).

DOI: 10.1016/0167-2789(85)90093-4

Google Scholar

[17] S.M. Jiang, L.X. Tian and X.D. Wang, Control of Arneodo chaotic system, Journal of Jiangsu University, vol. 26, p.492–495, (2005).

Google Scholar

[18] J.G. Lu, Chaotic dynamics and synchronization of fractional-order Arneodo's systems, Chaos, Solitons & Fractals, vol. 26, p.1125–1133, Nov. (2005).

DOI: 10.1016/j.chaos.2005.02.023

Google Scholar

[19] M. Caputo, Linear models of dissipation whose Q is almost frequency independent, The Geophysical Journal of the Royal Astronomical Society, vol. 13, p.529–539, April (1967).

DOI: 10.1111/j.1365-246x.1967.tb02303.x

Google Scholar

[20] E. Ahmed, A.M.A. El-Sayed and Hala A.A. El-Saka, On some Routh- Hurwitz conditions for fractional order differential equations and their applications in Lorenz, , Chua and Chen systems, Phys Let A, vol. 358, p.1–4, Oct. (2006).

DOI: 10.1016/j.physleta.2006.04.087

Google Scholar

[21] E. Ahmed, A.M.A. El-Sayed and Hala A.A. El-Saka, Equilibrium points, stability and numerical solutions of fractional-order predator- prey and rabies models, Journal of Mathematical Analysis and Applications, vol. 325, p.542–553, Jan. (2007).

DOI: 10.1016/j.jmaa.2006.01.087

Google Scholar

[22] K. Diethelm, An algorithm for the numerical solution of differential equations of fractional order, Electron Trans Numer Anal, vol. 5, p.1–6, March (1997).

Google Scholar

[23] K. Diethelm and Neville J. Ford, Analysis of fraction differential equations, J Math Anal Appl, vol. 265, p.229–248, Jan. (2002).

Google Scholar

[24] K. Diethelm, Neville J. Ford and Alan D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn, vol. 29, p.3–22, (2002).

Google Scholar

[25] K. Diethelm and Alan D. Freed, The FracPECE subroutine for the numerical solution of differential equations of fractional order, In: Heinzel S, Plesser T, editors. Forschung und wissenschaftliches Rechnen. Göttingen: Gesellschaft für wissenschaftliches Datenverarbeitung; p.57.

Google Scholar