[1]
Marksberry, P. W. and Jawahir, I. S., A Comprehensive Tool-wear/Tool-life Model in the Evaluation of NDM (Near Dry Machining) for Sustainable Manufacturing, Int. J. Mach. Tools & Manuf., Vol. 48, pp.878-886, (2008).
DOI: 10.1016/j.ijmachtools.2007.11.006
Google Scholar
[2]
Dhar, N. R., Kamruzzaman, M. and Ahmed, M., Effect of Minimum Quantity Lubrication (MQL) on Too Wear and Surface Roughness in Turning AISI-4340 Steel, J. Mat. Proc. Tech., Vol. 172, pp.299-304, (2006).
DOI: 10.1016/j.jmatprotec.2005.09.022
Google Scholar
[3]
Sarma, D. K. and Dixit, U. S., "A Comparison of Dry and Air-cooled Turning of Grey Cast Iron with Mixed Oxide Ceramic Tool, J. Mat. Proc. Tech., Vol. 190, pp.160-172, (2007).
DOI: 10.1016/j.jmatprotec.2007.02.049
Google Scholar
[4]
Jayal, A. D., and Balaji, A. K., Effects of Cutting Fluid Application on Tool Wear in Machining: Interactions with Tool-Coatings and Tool Surface Features, Wear, Vol. 267, pp.1723-1730, (2009).
DOI: 10.1016/j.wear.2009.06.032
Google Scholar
[5]
Varadaarajan, A. S., Philip, P. K. and Ramamoorthy, B., Investigations on Hard Turning with Minimal Cutting Fluid Application (HTMF) and its Comparison with Dry and Wet Turning, Int. J. Mach. Tools & Manuf., Vol. 42, pp.193-200, (2002).
DOI: 10.1016/s0890-6955(01)00119-5
Google Scholar
[6]
Wang, Z. G., Rahman, M., Wong, Y. S., Neo, K.S., Sun, J., Tan, C. H., and Onozuka, H., Study on Orthogonal Turning of Titanium Alloys with Different Cutting fluid Supply Strategies, Int. J. Adv. Manuf. Tech., Vol. 42, pp.621-632, (2009).
DOI: 10.1007/s00170-008-1627-x
Google Scholar
[7]
Harrma, V.S., Dogra, M. and Suri, N. M., Cooling Techniques for Improved Productivity in Turning, Int. J. Mach. Tools & Manuf., Vol. 49, pp.435-453, (2009).
DOI: 10.1016/j.ijmachtools.2008.12.010
Google Scholar
[8]
Tzeng, C-J., Lin, Y-H., Yanh, Y-K., and Jeng, M-C., Optimization of Turning Operations with Multiple Performance Characteristics using the Taguchi Method and Grey Relational Analysis, J. Mat. Proc. Tech., Vol. 209, pp.2753-2759, (2009).
DOI: 10.1016/j.jmatprotec.2008.06.046
Google Scholar
[9]
Dhar, N.R., Paul S., and Chattopadhyay A.B., The Influence of Cryoegenic Cooling on Tool Wear, Dimensional Accuracy and Surface Finish in Turning AISI 1040 and E4340C Steels, J. Materials Processing Technology, Vol. 116, pp.44-48, (2001).
DOI: 10.1016/s0043-1648(01)00825-0
Google Scholar
[10]
Khan, M. M., and Dhar, N. R., "Performance Evaluation of Minimum Quantity Lubrication by Vegetable Oil in Terms of Cutting force, Cutting zone Temperature, Tool wear, Job Dimension and Surface Finish in Turning AISI-1060 Steel . J. Zhejiang University - Science A , 7 (11), 1790-1799.
DOI: 10.1631/jzus.2006.a1790
Google Scholar
[11]
Rafai, N. H. and Islam, M. N., Comparison of Dry and Flood Turning in Terms of Quality of Turned Parts, Proceedings of the World Congress on Engineering 2010, June 30th –July 2nd, 2010, London, p.2044-(2049).
Google Scholar
[12]
Drozda, T. J., and Wick, C. (eds), Tool and Manufacturing Engineers Handbook, Vol. 1, 4th Edition, SME, Dearborn, U.S.A., (1983).
Google Scholar
[13]
Park, S. H., Robust Design and Analysis for Quality Engineering, Chapman & Hall, London, (1996).
Google Scholar
[14]
Ross, P. J., Taguchi Techniques for Quality Engineering, McGraw-Hill, New York, (1988).
Google Scholar
[15]
Lima, J. G., Avila, R. F., Abrao, A. M., Faustino, M. & Davim, J. P., Hard Turning: AISI 4340 high strength low alloy steel and AISI D2 cold work tool steel. J. Mat. Proc. Tech., Vol. 169, 388-395, (2005).
DOI: 10.1016/j.jmatprotec.2005.04.082
Google Scholar
[16]
Rafi, N. H. and Islam, M. N., An Investigation into Dimensional Accuracy and Surface Finish Achievable in Dry Turning, Machining Science and Technology, Vol. 13(4), 2009, pp.571-589.
DOI: 10.1080/10910340903451456
Google Scholar
[17]
MatWeb, Material Property Data, Accessed through Internet (21/7/2010), http: /www. matweb. com/ Table 2. Pareto ANOVA analysis for Experiment 1 Table 3. Pareto ANOVA analysis for Experiment 2 Table 4. Pareto ANOVA analysis for Experiment 3 Table 5. Pareto ANOVA analysis for Experiment 4 Figure 1. Response graph for Experiment 1 Figure 3. Response graph for Experiment 2 Figure 5. Response graph for Experiment 3 Figure 7. Response graph for Experiment 4 Figure 2. Variation of surface roughness for dry, MQL and flood turning Figure 4. Variation of surface roughness for dry, half fl. and flood turning Figure 6. Variation of surface roughness for MQL turning Figure 8. Variation of surface roughness for different work materials.
DOI: 10.7717/peerj.11831/fig-2
Google Scholar