Effect of Nitrogen Doping on the Structure and Optical Properties of N-Type Hydrogenated Amorphous Silicon Thin Films

Article Preview

Abstract:

Hydrogenated amorphous silicon (a-Si:H) thin films doped with both Phosphor and Nitrogen are deposited by ratio frequency plasma enhanced chemical vapor deposition (PECVD). The effect of gas flow rate of ammonia (FrNH3) on the composition, microstructure and optical properties of the films has been investigated by X-ray photoelectron spectroscopy, Raman spectroscopy and ellipsometric spectra, respectively. The results show that with the increase of FrNH3, Si-N bonds appear while the short-range order deteriorate in the films. Besides, the optical properties of N-doped n-type a-Si:H thin films can be easily controlled in a PECVD system.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

6980-6985

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. B. Schubert, Low temperature silicon deposition for large area sensors and solar cells, Thin Solid Films, vol. 337, Jan. 1999, pp.240-247, doi: 10. 1016/S0040-6090(98)01435-7.

DOI: 10.1016/s0040-6090(98)01435-7

Google Scholar

[2] Han Lin, Liu Xingming, Liu Litian, a-Si Thin Film Transistor for Infrared Sensors, Semiconductor optoelectronics, vol. 27, Aug. 2006, pp.393-396, doi: 1001-5868(2006)04-0393-03.

Google Scholar

[3] Man Xu, Donglin Xia, Sheng Yang, et al, Thin Film Solar Cells, Materials Review, vol. 20, Sep. 2006, pp.109-111, doi: 1005-023X. 0. 2006-09-030.

Google Scholar

[4] D. L. Staebler and C. R. Wronski, Reversible conductivity changes in discharge‐produced amorphous Si, Appl. Phys. Lett. vol. 31, Aug. 1977, pp.292-294, doi: 10. 1063/1. 89674.

DOI: 10.1063/1.89674

Google Scholar

[5] M. Isomura, M. Tanaka and S. Tsuda, Considering the Dependence of the Light-Induced Effect on Carbon Content in Boron-Doped Amorphous Silicon-Carbon, Jpn. J. Appl. Phys. Vol. 35, Sep. 1996, pp.4626-4627, doi: 10. 1143/JJAP. 35. 4626.

DOI: 10.1143/jjap.35.4626

Google Scholar

[6] D. Wagner and P. Irsigler, On the annealing behaviour of the Staebler-Wronski effect ina-Si: H, Appl. Phys. A: Mater. Sci. Process, vol. 35, Sep. 1984, pp.9-12, doi: 10. 1007/BF00620293.

DOI: 10.1007/bf00620293

Google Scholar

[7] Naiman Liao, Wei Li, Yadong Jiang, et al, Recent Progresses on the Stability of Hydrogenated Amorphous Silicon Thin Films, Materials Review, vol. 21, May 2007, pp.21-24, doi: 1005-023X. 0. 2007-05-005.

Google Scholar

[8] S. Y. Ren, W. Y. Ching, Electronic structures of β- and α-silicon nitride, Phys Rev B, vol. 23, May 1981, pp.5454-5463, doi: 10. 1103/PhysRevB. 23. 5454.

Google Scholar

[9] J. Robertson, M. J. Powell, Gap states in silicon nitride, Appl. Phys. Lett. vol. 44, Feb. 1984, pp.415-419, doi: 10. 1063/1. 94794.

Google Scholar

[10] A. Lqbal, W. B. Jackson, C. C. Tsai, et al, Electronic structure silicon nitride and amorphous silicon/silicon nitride band offsets by electron spectroscopy, J Appl Phys, vol. 61, Apr. 1987, pp.2947-2953, doi: 10. 1063/1. 337842.

DOI: 10.1063/1.337842

Google Scholar

[11] K. Maeda, L. Umezu, Atomic microstructure and electronic properties of a-SiNx: H deposited by radio frequency glow discharge, J Appl Phys, vol. 70, Sep. 1991, pp.2745-2754, doi: 10. 1063/1. 350352.

DOI: 10.1063/1.350352

Google Scholar

[12] J. I. Pankove, Semiconductors and Semimetals, " New York: Academic Press, 1984, p.159.

Google Scholar

[13] A. Masuda, K. Itoh, M. Kumeda, et al, Origin of charged dangling bonds in nitrogen-doped hydrogenated amorphous silicon, J Non-Cryst Solids, vol. 198-200, May 1996, pp.395-398, doi: 10. 1016/0022-3093(95)00741-5.

DOI: 10.1016/0022-3093(95)00741-5

Google Scholar

[14] Yuejun Kuang, Wei Li, Naiman Liao, et al, Study on the Optical Properties of P-doped a-Si: H Thin Films by Spectroscopic Ellipsometry, Semiconductor optoelectronics, vol. 28, Dec. 2007, pp.829-832, doi: BDTG. 0. 2007-06-022.

Google Scholar

[15] T. V. Herak, R. D. McLeod, K. C. Kao, et al, Undoped amorphous SiNx: H alloy semiconductors: Dependence of electronic properties on composition, Journal of Non-Crystalline Solids, vol. 69, Dec. 1984, pp.39-48, doi: 10. 1016/0022-3093(84)90121-2.

DOI: 10.1016/0022-3093(84)90121-2

Google Scholar

[16] J. Tauc, R. Grigrovici, A. Vancu. Optical properties and electronic structure of amorphous germanium. Phys. Stat. Sol. Vol. 15, 1966, pp.627-637, doi: 10. 1002/pssb. 19660150224.

DOI: 10.1002/pssb.19660150224

Google Scholar

[17] H. Kurata, M. Hirose, Y. Osaka, Wide optical-gap, photoconductive a-SixN1-x: H, Jpn J Appl Phys, vol. 20, Nov. 1981, pp. L811-L813, doi: 10. 1143/JJAP. 20. L811.

DOI: 10.1143/jjap.20.l811

Google Scholar

[18] R. Karcher, L. Ley, R. Johnson, Electronic structure of hydrogenated and unhydrogenated amorphous SiNx (0≤x≤1. 6): A photoemission study, Phys Rev B, vol. 30, Aug. 1984, pp.1896-1910, doi: 10. 1103/PhysRevB. 30. 1896.

Google Scholar