First Principles Molecular Simulations of Soda-Lime-Silica Glass

Article Preview

Abstract:

This work aims to explore possible applications of the ab initio molecular dynamics (MD) in modeling of the soda-lime-silica (NCS) glass and melt doped with admixtures. Preparation of the basic glass (15.8 wt.% Na2O, 10.5 wt.% CaO, and 73.7 wt.% SiO2) by the MD simulation from scratch is described. The structure analysis of the NCS glass is presented in the form of total and partial radial distribution functions (RDF), coordination numbers, and fractions of Qn units. The reasonable first neighbor distances were obtained, even if a rather small basis set of electronic wavefunctions and softer pseudopotentials for atomic core regions were applied. All major discrepancies in the first neighbor distances can be easily explained, and the results can be improved if needed. The Qn distribution shows higher disproportionation of Q3 than NMR and Raman experimental data, however, it is lower than previous classical MD simulations.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 39-40)

Pages:

85-88

Citation:

Online since:

April 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation: