Preparation and Characterization of Lanthanum (La)-Doped TiO2

Article Preview

Abstract:

Lanthanum-doped anatase TiO2 coatings, which were composed of assemble crystalline of 50 nm diameter particles have been successfully fabricated by sol–gel dip-coating process on light leakage quartz fiber (LQF) which length is 15cm and diameter is 125μm. This was achieved by adjustment of the lanthanum-doped sol–gel parameters such as molar ratio of precursors in lanthanum-doped TiO2-sols, the ratio of titanium tetrabutoxide to polyvinyl alcohol, dip-coating velocity, drying duration in air, thermal treatment and number of cyclical time of the process. Titania nano crystals were prepared by ambient temperature in a liquid media using titanium tetrabutoxide as precursor, and the crystallization of amorphous precursor was preceded by peptizing with acid and then refluxing for a periodic time in homothermal water-bath. The photocatalytic properties of the lanthanum-doped TiO2 films were testified by the photo degradation of methyl orange. The lanthanum-doped anatase TiO2 thin films were characterized by XRD and TEM.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 391-392)

Pages:

1036-1040

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, K. Honda: Nature Vol. 238 (1972), p.37.

Google Scholar

[2] S.N. Frank, A.J. Bard: J. Phys Chem. Vol. 81 (1977), p.1484.

Google Scholar

[3] A. Heller: Acc. Chem. Res. Vol. 28 (1995), p.503.

Google Scholar

[4] L. Li: Journal of Rare Earths. Vol. 25 (2007), p.68.

Google Scholar

[5] S.D. Xia, T. Chen and C.K. Duan: Journal of Rare Earths Vol. 24 (2006), p.400.

Google Scholar

[6] I. Sopyan, M. Watanabe, S. Murasawa, K. Hashimoto and A. Fujishima: Journal of Electroanalytical Chemistry Vol. 415 (1996), p.183.

Google Scholar

[7] O. Legrini, E. Oliveros, A.M. Braun: Chem. Rev. Vol. 93 (1993), p.671.

Google Scholar

[8] S. Takeda, K. Prasad, H. Hosono: Thin Solid Films Vol. 392 (2001), p.338.

Google Scholar

[9] D. Bhattacharyya, N.K. Sahoo, S. Thakur and N.C. Das: Thin Solid Films Vol. 360 (2000), p.96.

Google Scholar

[10] K. Shimizu, H. Imai, H. Hirashima and K. Tsukuma: Thin Solid Films Vol. 351 (1999), p.220.

Google Scholar

[11] A. Matsuda, T. Matoda, Y. Kotani, T. Kogure, M. Tatsumisago and T. Minami: J. Sol–Gel Sci. Technol. Vol. 26 (2003), p.517.

DOI: 10.1023/a:1020751416445

Google Scholar

[12] M.S. Hoffmann, T. Martin, W. Choi and D.W. Bahnemann: Chem. Rev. Vol. 95 (1995), p.69.

Google Scholar

[13] D. Robert, A. Piscopo, O. Heintz: Catal. Today Vol. 54 (1999), p.291.

Google Scholar

[14] M. Lindner, J. Theurich, D.W. Bahnemann: Water Sci. Tec. Vol. 354 (1997), p.79.

Google Scholar

[15] N. Martyanov, E.N. Savinov: Catal. Today Vol. 39 (1997), p.197.

Google Scholar

[16] J.Y. An, B.W. Kim: J. Biotechnol Vol. 80 (2000), p.35.

Google Scholar

[17] R.A. Spurr, H. Myers: Anal. Chem. Vol. 29 (1957), p.760.

Google Scholar

[18] M.A. Fox, M.T. Duby: Chem. Rev. Vol. 93 (1993), p.341.

Google Scholar