Preparation and Characterization of Nickel Plating Graphite Nanosheet Filled Conductive Adhesive

Article Preview

Abstract:

In this paper, nickel plating graphite nanosheet (Ni plating GN) was developed by electroless plating method using graphite nanosheet (GN). The Ni and P content on the surface of GN is 34.08wt% and 2.99wt% according to the elementary analysis. The electrically conductive adhesives (ECAs) comprised acrylate pressure -sensitive adhesive (acrylate PSA) and Ni plating GN was studied. TEM result showed that Ni plating GN is homogeneously dispersed in the acrylate PSA. The electrical conductivity of the ECAs increases to 3.14×10-4 S/cm and the 180° peel strength and shear strength remains at a high level (180° peel strength about 0.58 MPa and shear strength about 0.48 MPa) when the content of Ni plating GN is 20 wt%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 391-392)

Pages:

1100-1104

Citation:

Online since:

December 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Mir, D. Kumar: Int. J. Adhes. Adhes. Vol. 28 (2008), p.362.

Google Scholar

[2] Y.L. Guan, X. Chen, F.Q. Li and H. Gao: Int. J. Adhes. Adhes. Vol. 30 (2010), p.80.

Google Scholar

[3] H. Kim, J. Kim and J. Kim: Microelectron. Reliab. Vol. 50 (2010), p.258.

Google Scholar

[4] K. Suganuma: Curr. Opin. Solid State Mater. Sci. Vol. 5 (2001), p.55.

Google Scholar

[5] Y. Zhang, S.H. Qi, X.M. Wu and G.C. Duan: Synth. Met. Vol. 161 (2011), p.516.

Google Scholar

[6] N.L. Liu, S.H. Qi, S.S. Li, X.M. Wu and L.M. Wu: Polym. Test. Vol. 30 (2011), p.390.

Google Scholar

[7] Y. Li, K. Moon and C.P. Wong: Science. Vol. 308 (2005), p.1419.

Google Scholar

[8] Y. Li and C.P. Wong: Mater. Sci. Eng. R. Vol. 51 (2006), p.1.

Google Scholar

[9] C.T. Murray, R.L. Rudman, M.B. Sabade and A. V. Pocius: Mater. Res. Bull Vol. 28 (2006), p.449.

Google Scholar

[10] E.P. Wood and K.L. Nimmo: J. Electron. Mater Vol. 23 (1994), p.8.

Google Scholar

[11] S.L.C. Hsu and R.T. Wu: Mater. Lett. Vol. 61 (2007), p.3719.

Google Scholar

[12] G. Jiang, M. Gilbert, D.J. Hitt, G.D. Wilcox and K. Balasubramanian: Composites A. Vol. 33 (2002), p.745.

Google Scholar

[13] D. Lu, D. Wong and C.P. Wong: J. Electron. Manufact. Vol. 23 (2000), p.241.

Google Scholar

[14] H.K. Kim and F.G. Shi: Microelectronics. J. Vol. 32 (2001), p.315.

Google Scholar

[15] M. Kozlowski and A. Kozlowska: Macromol. Symp. Vol. 108 (1996), p.261.

Google Scholar

[16] W.G. Weng, G.H. Chen, D.J. Wu, X.F. Chen, J.R. Lu and P.P. Wang: J. Polym. Sci. Pol. Phys. Vol. 42 (2004), p.2844.

Google Scholar

[17] J.R. Lu, W.G. Weng, X.F. Chen, D.J. Wu, C.L. Wu and G.H. Chen: Adv. Funct. Mater. Vol. 15 (2005), p.1358.

Google Scholar

[18] W. Lu, J.X. Weng, D.J. Wu, C.L. Wu and G.H. Chen: Mater. Manuf. Process. Vol. 21 (2006), p.167.

Google Scholar

[19] L. Chen, G.H. Chen and L. Lu: Adv. Funct. Mater. Vol. 17 (2007), p.898.

Google Scholar

[20] K. Kalaitzidou, H. Fukushima and L.T. Drzal: Compos. Sci. Technol. Vol. 67 (2007), p. (2045).

Google Scholar

[21] N. Jovic, D. Dudic, A. Montone, M.V. Antisari, M. Mitric and V. Djokovic: Scripta. Mater. Vol. 58 (2008), p.846.

Google Scholar

[22] S.Y. Qu and S.C. Wong: Compos. Sci. Technol. Vol. 67 (2007), p.231.

Google Scholar