Prediction of Antigen Epitopes on Protein Surfaces Based on Support Vector Machine

Article Preview

Abstract:

B-cell epitope prediction is important for vaccine design, development of diagnostic reagents and for studies to elucidate the interactions between antigen and antibody on a molecular level. Here, we present a new epitope prediction method based on six different scoring functions and exploited LibSVM to predict the antigenic epitopes in protein surface. Using bound structures of the testing dataset, the method was able to predict antigenic epitopes with 50.6% sensitivity, 62.9% specificity, 19% precision and an AUC value of 0.616. While using unbounded structures of the testing dataset, the performance of the method was nearly the same. Compared with another epitope prediction method EPCES, the performance of the method is statistically similar. The results suggest that more effective features that discriminate epitopes from non-epitopes may further improve the performance of the prediction method. Also, the new algorithms for predicting the epitopes are desired and the construction of large with non-redundant datasets is strongly needed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 393-395)

Pages:

884-889

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Peters, B.; Sidney, J.; Bourne, P.; Bui, H.H.; Buus, S.; Doh, G.; Fleri, W.; Kronenberg, M.; Kubo, R.; Lund, O.; Nemazee, D.; Ponomarenko, J.V.; Sathiamurthy, M.; Schoenberger, S.P.; Stewart, S.; Surko, P.; Way, S.; Wilson, S.; Sette, A. The design and implementation of the immune epitope database and analysis resource. Immunogenetics 2005, 57, 326-336.

DOI: 10.1007/s00251-005-0803-5

Google Scholar

[2] Van, Regenmortel, M.H. Antigenicity and immunogenicity of synthetic peptides. Biologicals 2001, 29, 209-213.

DOI: 10.1006/biol.2001.0308

Google Scholar

[3] Irving, M.B.; Pan, O.; Scott, J.K. Random-peptide libraries and antigen-fragment libraries for epitope mapping and the development of vaccines and diagnostics. Curr Opin Chem Biol 2001, 5, 314-324.

DOI: 10.1016/s1367-5931(00)00208-8

Google Scholar

[4] Rus, J.J.; Burnett, R.M. Type-specific epitope locations revealed by X-ray crystallographic study of adenovirus type 5 hexon. Mol Ther 2000, 1, 3-4.

DOI: 10.1006/mthe.1999.0001

Google Scholar

[5] Mayer, M.; Meyer, B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 2001, 123, 6108-17.

DOI: 10.1021/ja0100120

Google Scholar

[6] Pingping Sun, Wenhan Chen, Yanxin Huang, Hongyan Wang, Zhiqiang Ma and Yinghua Lv. Epitope Prediction Based on Random Peptide Library Screening: Benchmark Dataset and Prediction Tools Evaluation. Molecules 2011, 16(6), 4971-4993.

DOI: 10.3390/molecules16064971

Google Scholar

[7] Thornton, J.M.; Edwards, M.S.; Taylor, W.R.; Barlow, D.J. Location of continuous, antigenic determinants in the protruding regions of proteins. Embo J 1986, 5, 409-413.

DOI: 10.1002/j.1460-2075.1986.tb04226.x

Google Scholar

[8] Halperin, I.; Wolfson, H. SiteLight: Binding-site prediction using phage display libraries. Protein Sci 2003, 12, 1344-1359.

DOI: 10.1110/ps.0237103

Google Scholar

[9] Mumey, B.M. A new method for mapping discontinuous antibody epitopes to reveal structural features of proteins. J. Comput. Biol 2003, 10, 555-567.

DOI: 10.1089/10665270360688183

Google Scholar

[10] Kulkarni-Kale, U.; Bhosle, S.; Kolaskar, A.S. CEP: a conformational epitope prediction server. Nucleic Acids Res 2005, 33, W168-W171.

DOI: 10.1093/nar/gki460

Google Scholar

[11] Andersen, P.H.; Nielsen, M.; Lund, O. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci 2006, 15, 2558-2567.

DOI: 10.1110/ps.062405906

Google Scholar

[12] Kolaskar A S and Kulkarni-Kale U. Prediction of three-dimensional structure and mapping of conformational epitopes of envelope glycoprotein of Japanese encephalitis virus, Virology, 1999, 261, 31-42.

DOI: 10.1006/viro.1999.9859

Google Scholar

[13] Rapberger R, Lukas A, Mayer B: Identification of discontinuous antigenic determinants on proteins based on shape complementarities. J Mol Recognit. 2007, Mar-Apr; 20(2): 113-121.

DOI: 10.1002/jmr.819

Google Scholar

[14] Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B: ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 2008, 9: 514.

DOI: 10.1186/1471-2105-9-514

Google Scholar

[15] Michael J. Sweredoski, Pierre Baldi: PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics, 2008, 24(12): 1459–1460.

DOI: 10.1093/bioinformatics/btn199

Google Scholar

[16] Rubinstein ND, Mayrose I, Martz E, Pupko T: Epitopia: a web-server for predicting B-cell epitopes. BMC Bioinformatics 2009, 10: 287.

DOI: 10.1186/1471-2105-10-287

Google Scholar

[17] Liang S, Zheng D, Zhang C, Zacharias M: Prediction of antigenic epitopes on protein surfaces by consensus scoring. BMC Bioinformatics 2009, 10: 302.

DOI: 10.1186/1471-2105-10-302

Google Scholar

[18] Ponomarenko JV, Bourne PE: Antibody-protein interactions: benchmark datasets and prediction tools evaluation. BMC Structural Biology 2007, 7(2): 64.

DOI: 10.1186/1472-6807-7-64

Google Scholar

[19] Wen Han Chen , Ping Ping Sun, Yang Lu, William W. Guo, Yan Xin Huang , Zhi Qiang Ma. MimoPro: a more efficient web-based tool for epitope prediction using phage display libraries. BMC Bioinformatics 2011, 12: 199.

DOI: 10.1186/1471-2105-12-199

Google Scholar

[20] Mintseris J, Wiehe K, Pierce B, Anderson R, Chen R, Janin J, Weng Z: Protein-Protein Docking Benchmark 2. 0: an update. Proteins 2005, 60: 214-216.

DOI: 10.1002/prot.20560

Google Scholar

[21] Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res 2000, 28(1): 235-242.

DOI: 10.1107/97809553602060000722

Google Scholar

[22] C.C. Chang and C.J. Lin. LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, 2: 27: 1-27: 27.

DOI: 10.1145/1961189.1961199

Google Scholar

[23] Yan Fu, Ruixiang Sun, Qiang Yang, Simin He, Chunli Wang, Haipeng Wang1, Shiguang Shan, Junfa Liu, Wen Gao. A Block-Based Support Vector Machine Approach to the Protein Homology Prediction Task in KDD Cup 2004. ACM SIGKDD Explorations Newsletter. 2004, 2(6). doi>10. 1145/1046456. 1046475.

DOI: 10.1145/1046456.1046475

Google Scholar

[24] Fawcett T: An introduction to ROC analysis. Pattern Recognition Letters. 2006, 27(8): 861-874.

DOI: 10.1016/j.patrec.2005.10.010

Google Scholar