Blue Upconversion Luminescence Properties of La2(WO4)3:Yb3+/Tm3+Phosphor

Article Preview

Abstract:

Monoclinic La2(WO4)3 nanophosphors codoped with Tm3+ and Yb3+ ions were synthesized via hydrothermal process followed by heat treatment. Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize as-prepared samples. The dependences of Yb3+/ concentration and laser pumping power on the upconversion emissions were extensively investigated. The results show that upconversion luminescence increases with the Yb3+/ concentration and gets its peak at 30 %. The upconversion mechanism and process in the Yb3+/Tm3+ codoped La2(WO4)3 phosphors were analysed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

1020-1025

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Auzel, Chem. Rev. 104 (2004) 139-173.

Google Scholar

[2] H. Naruke, D. M. Obaid, J. Lumin. 129 (2009) 1132-1136.

Google Scholar

[3] A. A. Demidovich, A. N. Kuzmin, N. K. Nikeenko, A. N. Titov, M. Mond, S. Kueck, J. Alloys Compd. 341 (2002) 124-129.

DOI: 10.1016/s0925-8388(02)00093-2

Google Scholar

[4] X. B. Chen, Z. F. Song, J. Opt. Soc. Am. B 24 (2006) 965-971.

Google Scholar

[5] D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, Appl. Phys. Lett. 91 (2007) 051920-051922.

Google Scholar

[6] J. J. Owen, A. K. Cheetham, R. A. Mcfarlane, J. Opt. Soc. Am. B 15 (1998) 684-693.

Google Scholar

[7] G. F. Wang, W. P. Qin, L. L. Wang, G. D. Wei, P. F. Zhu, R. J. Kim, Opt. Express 16 (2008) 11907.-11914

Google Scholar

[8] N. Rakov, G. S. Maciel, R. B. Guimaraes, I. C. S. Carvalho, Mater. Chem. Phys. 123 (2010) 199-202.

Google Scholar

[9] Q. Sun, H. Zhao, X. Q. Chen, F. P. Wang, W. Cai, Z. H. Jiang, Mater. Chem. Phys. 123 (2010) 806-810.

Google Scholar

[10] F. N. Su, Z. D. Deng, Opt. Mater. 29 (2007) 1452-1455.

Google Scholar

[11] Z. X. Chen, W. B. Bu, N. Zhang, J. L. Shi, J. Phys. Chem. C 112 (2008) 4378-4383.

Google Scholar

[12] J. S. Liao, Y. W. Wei, B. Qiu, Y. Li, L. B. Liu, Q. X. Wu, Phys. B 405 (2010) 3507-3511.

Google Scholar

[13] C. A. Kodaira, H. F. Brito, M. C. F. C. Felinto, J. Solid State Chem. 171 (2003) 401-407.

Google Scholar

[14] C. F. Guo, T. Chen, L. Luan, W. Zhang, D. X. Huang, J. Phys. Chem. Solids 69 (2008) 1905-1911.

Google Scholar

[15] X. D. Qi, Z. D. Luo, J. K. Liang, J. Cryst. Growth 216 (2000) 363-366.

Google Scholar

[16] Q. Chen, D. H. Chen, Optic Laser Tech. 41 (2009) 783-787.

Google Scholar

[17] J. C. Boyer, L. A. Cuccia, J. A. Capobianco, Nano Lett. 7 (2007) 847-852.

Google Scholar

[18] M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, M. P. Hehlen,Phys. Rev. B 61 (2000) 3337-3346.

DOI: 10.1103/physrevb.61.3337

Google Scholar

[19] X. J. Pei, Y. B. Hou, S. L. Zhao, Z. Xu, F. Teng, Mater. Chem. Phys. 90 (2005) 270-274.

Google Scholar

[20] X. Y. Huang, Chin. Opt. Lett. 8 (2010) 780-783.

Google Scholar

[21] X. Qin, T. Yokomori, Y. Ju, Appl. Phys. Lett. 90 (2007) 073104-073106.

Google Scholar

[22] G. Qin, W. Qin, C. Wu, S. Huang, D. Zhao, J. Zhang, and S. Lu, Opt. Commun.242 (2004) 215-219.

Google Scholar

[23] T. Riedener, U. C. Gudel, G. C. Vally, R. A. Mcfarlane, J. Lumin. 63 (1995) 327-337.

Google Scholar

[24] M. Dulick, G. E. Faulkener, N. J. Cockroft, D. C. Nguyen, J. Lumin. 48-49 (1991) 517-521.

Google Scholar