Study on Photoelectrochemical Performance of ZnO Nanotube /CdSeQuantum Dot-Sensitized Solar Cell

Article Preview

Abstract:

ZnO; Quantum Dot-sensitized Solar Cell; CdSe; Photoelectrochemical property Abstract: ZnO nanotubes (NTs) were successfully fabricated with a hydrothermal method at low temperature. X-ray diffraction (XRD) and scanning electron microscopy (SEM) have been utilized to characterize the samples. The ZnO nanotubes, sensitized by CdSe, were used as a photoanode of a quantum dot sensitized solar cell, which generated a maximum power conversion efficiency of 0.95%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

1429-1432

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O'Regan B and Grätzel M 1991, Nature, 353.

Google Scholar

[2] B. Kannan, K. Castelino and A. Majumdar, Nano Lett., 2003, 3, 1729; Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong,H. M. Cheng, W. J. Zhang, I. Bello and S. T. Lee, Nano Lett., 2008, 8, 4191.

Google Scholar

[3] I. Gonzalez-Valls and M. Lira-Cantu, Energy Environ. Sci., 2009,2, 19.

Google Scholar

[4] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, Nano Lett., 2006, 6, 215; M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. D. Yang, Nat. Mater., 2005, 4, 455; J. B. Baxter and E. S. Aydil, Appl. Phys. Lett., 2005, 86, 053114.

Google Scholar

[5] Alex B.F. Martinson, Jeffrey W.Elam, Joseph T.Hupp, et al. Nano Lett, 2007, 7(8):2183.

Google Scholar

[6] Minsu Seol, Heejin Kim, Youngjo Tak and Kijung Yong. Chem. Commun., 2010, 46, 5521.

Google Scholar

[7] L. J. Diguna, Q. Shen, J. Kobayashi and T. Toyoda, Appl. Phys. Lett., 2007, 91, 023116; K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris and E. S. Aydil, Nano Lett., 2007, 7, 1793; H. Zhang, X. Quan, S. Chen, H. T. Yu and N. Ma, Chem. Mater., 2009, 21, 3090.

DOI: 10.1021/nl070430o

Google Scholar

[8] Y. L. Lee and Y. S. Lo, Adv. Funct. Mater., 2009, 19, 604.

Google Scholar

[9] H. J. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Gratzel and M. K. Nazeeruddin, Nano Lett., 2009, 9, 4221.

Google Scholar

[10] W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen and L. M. Peng, J. Am. Chem. Soc., 2008, 130, 1124; Y. Tachibana, K. Umekita, Y. Otsuka and S. Kuwabata, J. Phys. Chem. C, 2009, 113, 6852.

Google Scholar

[11] Y. Tak, S. J. Hong, J. S. Lee and K. Yong, Cryst. Growth Des., 2009, 9, 2627; Y. Tak, S. J. Hong, J. S. Lee and K. Yong, J. Mater. Chem., 2009, 19, 5945.

DOI: 10.1039/b904993b

Google Scholar

[12] R. Vogel, P. Hoyer and H. Weller, J. Phys. Chem., 1994, 98, 3183; R. Plass, S. Pelet, J. Krueger, M. Gratzel and U. Bach, J. Phys. Chem. B, 2002, 106, 7578.

Google Scholar

[13] A. Zaban, O. I. Micic, B. A. Gregg and A. J. Nozik, Langmuir, 1998, 14, 3153.

Google Scholar