Enhanced Electrochemical Hydrogen Storage Characteristics of Mg2Ni-Type Alloy by Substituting Mg with La

Article Preview

Abstract:

The melt-spinning technique is applied to the preparation of the nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2-xLaxNi (x=0, 0.2, 0.4, 0.6). The as-spun alloy ribbons possessing a continuous length, a thickness of about 30 μm and a width of about 25 mm were prepared. The structures of the as-spun alloy ribbons are characterized by XRD, SEM and TEM. The electrochemical performances of the as-spun alloy ribbons are measured by an automatic galvanostatic system. The results show that no amorphous structure is detected in the as-spun Mg2Ni alloy, whereas the as-spun alloys substituted by La display a nanocrystalline and amorphous structure, confirming that the substitution of La for Mg notably intensifies the amorphous forming ability of the Mg2Ni-type alloy. For La content x≤0.2, the substitution of La for Mg brings to the formation of LaMg3 and La2Mg17 phases without changing the Mg2Ni major phase. But as La content is increased to x≥0.4, such substitution changes the major phase of the alloys to (La, Mg)Ni3+LaMg3. The discharge capacity of the as-cast alloys grows with the increasing amount of La substitution, whereas that of the as-spun alloys yields a maximum value with variation of La content. Furthermore, the substitution of La for Mg remarkably enhances the cycle stability of the as-cast and spun alloys. And the high rate dischargeability (HRD) of the as-cast and spun alloys first mounts up then falls with rising La content.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

1461-1466

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.P. Jain, Lal Chhagan, Ankur Jain: Int. J. Hydrogen Energy Vol. 35 (2010), p.5133

Google Scholar

[2] S.N. Kwon, S.H. Baek, D.R. Mummb, S.H. Hong, M.Y. Song: Int. J. Hydrogen Energy Vol. 33 (2008), p.4586

Google Scholar

[3] P. Palade, S. Sartori, A. Maddalena, G. Principi, S. Lo Russo, M. Lazarescu, G. Schinteie, V. Kuncser, G. Filoti: J. Alloy Compd Vol. 415 (2006), p.170

DOI: 10.1016/j.jallcom.2005.08.017

Google Scholar

[4] L.J. Huang, G.Y. Liang, Z.B. Sun, D.C. Wu: J. Power Sources Vol. 160 (2006), p.684

Google Scholar

[5] S.I. Yamaura, H.Y Kim, H. Kimura, A. Inoue, Y.J. Arata: J. Alloys Compd Vol. 339 (2002), p.230

Google Scholar

[6] H.S. Chen: Acta Metall Vol. 22 (1974), p.1505

Google Scholar

[7] Y.H. Zhang, B.W. Li, H.P. Ren, Y. Cai, X.P. Dong, X.L. Wang: Int. J. Hydrogen Energy Vol. 32 (2007), p.4627

Google Scholar

[8] T. Spassov, U. Köster: J. Alloy Compd Vol. 279 (1998), p.279

Google Scholar

[9] N. Cui , B. Luan, H.J. Zhao, H.K. Liu, S.X. Dou: J. Alloys Comp Vol. 233 (1996), p.236

Google Scholar

[10] A. Gasiorowski, W. Iwasieczko, D. Skoryna, H. Drulis, M. Jurczyk: J. Alloys Compd Vol. 364 (2004), p.283

DOI: 10.1016/s0925-8388(03)00544-9

Google Scholar