Preparation of Tin Nano-Spheres Film Anode Based on Copper-Nickel Nano-Pillars for Lithium Ion Batteries

Article Preview

Abstract:

Tin nano-spheres film was synthesized by electrodeposition based on the copper-nickel nano-pillars which were prepared by electrochemical method on the copper foil in an aqueous solution containing Cu (II) and Ni (II) at room temperature. The morphology, structure and composition of the as-prepared copper-nickel nano-pillars and tin nano-spheres were characterized by SEM, XRD, and EDS. The tin nano-spheres film anode features the large surface area, good electronic conductivity, and adhesion with the current collector, leading to the enhanced performance in lithium-ion batteries.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

1467-1472

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Larcher, S. Beattie, M. Morcrette, K. Edstroem, J.C. Jumas, and J.M. Tarascon: J. Mat. Chem. Vol. 17 (2007), p.3759

Google Scholar

[2] M. Winter and J.O. Besenhard, Electrochim: Acta Vol. 45 (1999), p.31

Google Scholar

[3] L.Y. Beaulieu, K.W. Eberman, R.L. Turner, L.J. Krause and J.R. Dahn: Electrochem. Solid-State Lett. Vol. 4 (2001), p. A137

DOI: 10.1149/1.1388178

Google Scholar

[4] Y.T. Cheng and M.W. Verbrugge: J. Electrochem. Soc. Vol. 157 (2010), p. A508

Google Scholar

[5] K.E. Aifantis and J.P. Dempsey: J. Power Sources Vol. 143 (2005), p.203

Google Scholar

[6] K.D. Kepler, J.T. Vaughey and M.M. Thackeray: J. Power Sources Vol. 81 (1999), p.383

Google Scholar

[7] W.H. Pu, X.M. He, J.G. Ren, C.R. Wan and C.Y. Jiang: Electrochim. Acta Vol. 50 (2005), p.4140

Google Scholar

[8] A.D.W. Todd, R.E. Mar and J.R. Dahn: J. Electrochem. Soc. Vol. 153 (2006), p. A1998

Google Scholar

[9] S. D. beattie and J. R. Dahn: J. Electrochem. Soc. Vol. 150 (2003), p. A894

Google Scholar

[10] J. Hassoun, S. Panero, P. Simon, P.L. Taberna and B. Scrosati: Adv. Mater. Vol. 19 (2007), p.1632

Google Scholar

[11] G.M. Ehrlich, C. Durand, X. Chen, T.A. Hugener, F. Spiess and S.L. Suib: J. Electrochem. Soc. Vol. 147 (2000), p.886

DOI: 10.1149/1.1393287

Google Scholar

[12] H. Mukaido, T. Yokoshima, T. Momma and T. Osaka: Electrochem. Solid-State Lett. Vol. 6 (2003), p. A218

Google Scholar

[13] O. Mao and J.R. Dahn: J. Electrochem. Soc. Vol. 146 (1999), p.414

Google Scholar

[14] L.B. Wang, S. Kitamura, T. Sonoda, K. Obata, S. Tanase and T. Sakai: J. Electrochem. Soc. Vol. 150 (2003), p. A1346

DOI: 10.1149/1.1606453

Google Scholar

[15] J.J. Zhang and Y.Y. Xia: J. Electrochem. Soc. Vol. 153 (2006), p. A1466

Google Scholar

[16] N. Tamura, Y. Kato, A. Mikami, M. Kamino, S. Matsuta and S. Fujitani, J. Electrochem. Soc. Vol. 153 (2006), p. A1626

DOI: 10.1149/1.2205156

Google Scholar

[17] J.W. Park, S. Rajendran and H. Kwon: J. Power Sources Vol. 159 (2006), p.1409

Google Scholar

[18] L. Xue, Z. Wei, R. Li, J. Liu, T. Huang and A. Yu: J. Mater. Chem. Vol. 219 (2011), p.3216

Google Scholar

[19] M.H. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y, Cui and J. Cho: Nano Lett. Vol. 9 (2009), p.3844

Google Scholar

[20] T. Song, J. Xia, J. Lee, D.H. Lee, M. Kwon, J. Choi, J. Wu, S.K. Doo, H. Chang, W. Park, D.S. Zang, H. Kim, Y. Huang, K. Hwang, J.A. Rogers and U. Paik: Nano Lett. Vol. 10 (2010), p.1710

DOI: 10.1021/nl100086e

Google Scholar

[21] H. W, Q. Pan, Y. Cheng, J Zhao and G. Yin: Electrochim. Acta Vol. 54 (2009), p.2851

Google Scholar

[22] I.A. Courtney and J.R. Dahn: J. Electrochem. Soc. Vol. 144 (1997), p. (2045)

Google Scholar

[23] J.R. Dahn, I.A. Courtney and O. Mao: Solid State Ionics Vol. 111 (1998), p.289

Google Scholar