[1]
G.M.P. Morrison, in: Urban stormwater pollution: heavy metal studies of natural waters (a review). Research Report 8 of Middlesex Polytechnic Research & Consultancy, Sweden, 1983.
Google Scholar
[2]
M. P. Waalkes, Cadmium carcinogenesis in review, J. Inorg. Biochem. 79 (2000) 241–244.
Google Scholar
[3]
E.C. Foulkes, Biological effects of heavy metals; CRCPress: Boca Raton, FL, 1990.
Google Scholar
[4]
O.R. Susana, D.L.R. Daniel, L. Lazaro, W.G. David, D.A. Katia, B. Jorge, M. Francisco, Assessment of heavymetal levels in Almendares River sediments - Havana City, Cuba, Water Res. 39 (2005) 3945–3953.
DOI: 10.1016/j.watres.2005.07.011
Google Scholar
[5]
I.K. Iskandar, D.C. Adriano, Remediation of soils contaminated with metals: a review of current practices in the USA, in: I.K. Iskandar, D.C. Adriano (Eds.), Remediation of Soils Contaminated with Metals, Advances in Environmental Science, Northwood, UK, 1997, p.1–26
DOI: 10.1201/9780367801243
Google Scholar
[6]
P. Santanu, Surfactant-enhanced remediation of organic contaminated soil and water, Adv. Colloid Interface Sci. 138 (2008) 24–58.
DOI: 10.1016/j.cis.2007.11.001
Google Scholar
[7]
B. Nowack, Environmental chemistry of aminopolycarboxylate chelating agents, Environ. Sci. Technol. 36 (2002) 4009–4016.
DOI: 10.1021/es025683s
Google Scholar
[8]
C.W.A. Nascimento, D. Amarasiriwardena, B. Xing, Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil, Environ. Pollut. 140 (2006) 114–123.
DOI: 10.1016/j.envpol.2005.06.017
Google Scholar
[9]
J.W. Huang, J. Chen, W.R. Berti, S.D. Cunningham, Phytoremediation of lead contaminated soils: role of synthetic chelates in lead phytoextraction, Environ. Sci. Technol. 3 (1997) 800–805.
DOI: 10.1021/es9604828
Google Scholar
[10]
A.D. Vassil, Y. Kapulnik, I. Raskin, D.E. Salt, The role of EDTA in lead transport and accumulation in Indian mustard, Plant Physiol. 117 (1998) 447–453.
DOI: 10.1104/pp.117.2.447
Google Scholar
[11]
W.A. Oleszek, Chromatographic determination of plant saponins, J. Chromatogr. A, 967 (2002) 147–162.
Google Scholar
[12]
C. Xia, Q. Zhu, J. Tian, R. Liu, X. Fan, Surface activity of tea saponin and the related functional properties, Chin. J. of Tea Sci. 10 (1990) 1–10.
Google Scholar
[13]
H.L. Xia, X.Y. Chi, Z.J. Yan, W.W. Cheng, Enhancing plant uptake of polychlorinated biphenyls and cadmium using tea saponin, Bioresour. Technol. 100 (2009) 4649–4653.
DOI: 10.1016/j.biortech.2009.04.069
Google Scholar
[14]
W.S. Shu, Z.H. Ye, C.Y. Lan, Z.Q. Zhang, M.H. Wong, Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon, Environ Pollut. 120 (2002) 445–453.
DOI: 10.1016/s0269-7491(02)00110-0
Google Scholar
[15]
M.J.I. Mattina, W. Lannucci-Berger, C. Musante, J.C. White, Concurrent plant uptake of heavy metals and persistent organic pollutants from soil, Environ. Pollut. 124 (2003) 375–378.
DOI: 10.1016/s0269-7491(03)00060-5
Google Scholar
[16]
H. Hattori, Influence of heavy metals on soil microbial activities, Soil Sci. Plant Nutr. 38 (1992) 93–100.
DOI: 10.1080/00380768.1992.10416956
Google Scholar
[17]
R.M. Miller, Biosurfactant facilitated remediation of metal contaminated soils, Environ. Health Perspect, 103 (1995) 59–62.
DOI: 10.1289/ehp.95103s159
Google Scholar
[18]
L. Jacob, J.L. Torrens, D.C. Herman, R.M. Miller-Maier, Biosurfactant (Rhamnolipid) Sorption and the Impact on Rhamnolipid-Facilitated Removal of Cadmium from Various Soils under Saturated Flow Conditions, Environ. Sci. Technol. 32 (1998) 776–781.
DOI: 10.1021/es970285o
Google Scholar