Combined Effect of Electromagnetic Field and Grain Refiner on Microstructure of Φ310 Mm 7050 Aluminium Alloy Ingot

Article Preview

Abstract:

Grain refinement is quite important for producing 7050 alloy ingot especially in large scale. Low frequency electromagnetic casting (LFEC) process was used to make 7050 aluminum alloy Φ310 ingots and study the effect of electromagnetic field and grain refiner on the microstructure of 7050 alloy ingots. The results showed that both grain refiner and low frequency electromagnetic field can result in some grain refinement of 7050 alloy. However, the low frequency electromagnetic field shows more remarkable grain refinement. For the grain refined alloy by grain refiner, further significant grain refinement can be achieved with the application of low frequency electromagnetic field. The finest microstructure was achieved by combining the applications of both grain refiner and electromagnetic field.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

1708-1711

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.-G. Yang, B.-L. Ou, Scandinavian Journal of Metallurgy 30 (2001) 158-167.

Google Scholar

[2] A. Morris, Materials World 6 (1998) 407-408.

Google Scholar

[3] B. S. Murty, S. A. Kori, M. Chakraborty, Inter. Mater. Rev. 47 (2002) 3-29.

Google Scholar

[4] R. Nadella, D. G. Eskin, L. Katgerman, Metall. Mater. Trans. A 39 (2008) 450-461.

Google Scholar

[5] D. G. Eskin, Physical metallurgy of direct chill casting of aluminum alloys, CRC Press, Boca Raton 2008.

DOI: 10.1201/9781420062823

Google Scholar

[6] Y. N. Kwon, Y. S. Lee, J. H. Lee, Grain size effect on hot forging of mg alloys, in: A. Nyberg, S. R. Agnew, N. R. Nelllamegham, M. O. Pekguleryuz (Eds.), Magnesium technology 2009, TMS, San Francisco, California, USA, 2009, pp.425-428.

Google Scholar

[7] P. S. Mohanty, J. E. Gruzleski, Acta Metallurgica Et Materialia 43 (1995) 2001-2012.

DOI: 10.1016/0956-7151(94)00405-7

Google Scholar

[8] G. I. Eskin, G. S. Makarov, Y. P. Pimenov, Adv. Perform. Mater. 2 (1995) 43-50.

Google Scholar

[9] X. Liu, Y. Osawa, S. Takamori, T. Mukai, Mater. Lett. 62 (2008) 2872-2875.

Google Scholar

[10] B. Zhang, J. Cui, G. Lu, Mater. Sci. Eng. A 355 (2003) 325-330.

Google Scholar

[11] J. Dong, Z. Zhao, J. Cui, F. Yu, C. Ban, Metall. Mater. Trans. A 35 (2004) 2487-2494.

Google Scholar

[12] K. Miwa, T. Tamura, M. Li, N. Omura, Y. Murakami, Materials Science Forum 690 (2011) 162-165.

Google Scholar

[13] Z. N. Getselev, J. Met. 10 (1971) 38-43.

Google Scholar

[14] Y. B. Zuo, M. Xia, S. Liang, Y. Wang, G. Scamans, Z. Fan, Mater. Sci. Technol. 27 (2011) 101-107.

Google Scholar

[15] Y. B. Zuo, B. Jiang, Z. Fan, Materials Science Forum 690 (2011) 137-140.

Google Scholar

[16] M. C. Flemings, Solidification Processing, McGraw-Hill, NY, USA, 1974.

Google Scholar

[17] M. C. Flemings, Metall. Trans. A 22 (1991) 957-981.

Google Scholar

[18] Y. B. Zuo, H. Nagaumi, J. Z. Cui, J. Mater. Process. Technol. 197 (2008) 109-115.

Google Scholar

[19] Y. Zuo, J. Cui, J. Dong, F. Yu, Mater. Sci. Eng. A 408 (2005) 176-181.

Google Scholar