Effect of Stacking Fault Energy on the Mechanical Properties of Cold-Rolling Cu and Cu-Al-Zn Alloys

Article Preview

Abstract:

Sacking fault energy (SFE) plays a significant role for metals or alloys to getting high strength and expected ductility simultaneously. Here the effect of SFE variation on mechanical properties has been studied in cold-rolling Cu and Cu-Al-Zn alloys. Tensile testing results show that the strength and ductility of the materials increase simultaneously with decreasing SFE. X-ray diffraction measurements indicate the peak broadening for the crystallite size decreasing and the lattice strain increasing with the stacking fault energy lowering . The relationship between the microstructure and mechanical properties of the materials is briefly discussed in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

708-712

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, Y.T. Zhu, JOM 58 (4) (2006) 33–39.

Google Scholar

[2] V.L. Tellkamp, A. Melmed, E.J. Lavernia, Metall. Mater. Trans. A 32 (2001) 2335–2343.

Google Scholar

[3] Y.Wang, M.W. Chen, F.H. Zhou, E. Ma, Nature 419 (2002) 912–915.

Google Scholar

[4] S. Cheng, J.A. Spencer W.W. Milligan, Acta Mater. 51 (2003) 4505–4518.

Google Scholar

[5] Y.Wang, E. Ma, Acta Mater. 52 (2004) 1699–1709.

Google Scholar

[6] P.L. Sun, C.Y. Yu, P.W. Kao, C.P. Chang, Scripta Mater. 52 (2005) 265–269.

Google Scholar

[7] C.Y. Yu, P.L. Sun, P.W. Kao, C.P. Chang, Scripta Mater. 52 (2005) 359–363.

Google Scholar

[8] P.C. Hung, P.L. Sun, C.Y. Yu, P.W. Kao, C.P. Chang, Scripta Mater. 53 (2005) 647–652.

Google Scholar

[9] U.F. Kocks, H. Mecking, Prog. Mater. Sci. 48 (2003) 171–273.

Google Scholar

[10] C.P. Chang, P.L. Sun, P.W. Kao, Acta Mater. 48 (2000) 3377–3385.

Google Scholar

[11] Y.T. Zhu, Y.R. Kobolov, G.P. Grabovetskaya, V.V. Stolyarov, N.V. Girsova, R.Z. Valiev, J. Mater. Res. 18 (2003) 1011–1016.

Google Scholar

[12] P.L. Sun, E.K. Cerreta, G.T. Gray III, J.F. Bingert, Metall. Mater. Trans. A 37 (2006)2983–2994.

Google Scholar

[13] Pei-Ling Suna, Y.H. Zhaob, J.C. Cooleyc, M.E. Kassnerd, Z. Horitae, T.G. Langdond,f

Google Scholar

[14] L. Lu, L.B. Wang, B.Z. Ding, K. Lu, J. Mater. Res. 14 (2000) 270–273.

Google Scholar

[15] Z. Horita, K. Ohashi, T. Fujita, K. Kaneko, T.G. Langdon, Adv. Mater. 17 (2005) 1599–1602.

Google Scholar

[16] P.L. Sun, E.K. Cerreta, G.T. Gray III, P. Rae, Mater. Sci. Eng. A 410–411 (2005) 265–268.

Google Scholar

[17] S. Cheng, Y.H. Zhao, Y.T. Zhu, E. Ma, Acta Mater. 55 (2007) 5822–5832.

Google Scholar

[18] P.L. Sun, E.K. Cerreta, J.F. Bingert, G.T. Gray III, M.F. Hundley, Mater. Sci. Eng. A 464 (2007) 343–350.

Google Scholar

[19] Peng Yang, Hao Yang, Jingmei Tao, Caiju Li, Li Shen, X.K. Zhu, Materials Science Forum Vols. 667-669 (2011) pp.1003-1008

Google Scholar

[20] Hao Yanga, Peng Yang, Jingmei Tao, Caiju Li and Xinkun Zhub, Materials Science Forum Vol. 683 (2011) pp.95-102

Google Scholar

[21] M. F. DENANOT and J. P. VILLAIN. phys. stat. sol. (a)8, K125 (1971).

Google Scholar

[22] T. Venugopal, K. Prasad Rao, B.S. Murty, Acta Mater. 55 (2007) 4439.

Google Scholar

[23] Y. B. Wang, X. Z. Liao, Y. H. Zhao, E. J. Lavernia, S. P. Ringer, Z. Horita, T. G.Langdon, and Y. T. Zhu, Mater. Sci. Eng. A 527 (2010) 4959.

Google Scholar

[24] Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, T.G. Langdon, Appl. Phys, Lett. 89 (2006)121906.

Google Scholar

[25] Youssef K et al. Acta Mater (2011).

Google Scholar

[26] Rao SI, Hazzeldine PM. Phil Mag 2000;A80:(2011)

Google Scholar

[27] L. Lu, T. Zhu, Y. F Shen, M Dao, K. Lu, S. Suresh, Acta Mater. 57 (2009) 5165.

Google Scholar

[28] X.H. An, W.Z. Han, C.X. Huang, P. Zhang, G. Yang, S.D. Wu, and Z.F. Zhang,Appl. Phys. Lett. 92 (2008) 201915.

Google Scholar