Molecular Dynamics Simulation of Nanoindentation on Diamond Crystal [100] Surface

Article Preview

Abstract:

The nanoindentation of diamond crystal [100] surface is studied in this paper, by using molecular dynamics simulation method and Tersoff potential. The total number of atoms in the model is exceed to 2,000,000. The crystal structure changes and the bond formations of C atoms under pressure load are analyzed. A light load causes lattice distortion but cannot cause bond breaking or hybridization transition from sp3 to sp2. When the load is enough heavy, the energy be imposed on the workpiece will beyond the range of lattice distortion, which can cause bond break and hybridization transition from sp3 to sp2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

751-759

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Schulze; H. Autenrieth; M. Deuchert; etc., CIRP Annals - Manufacturing Technology, 2010, 59 (1): 117-120

Google Scholar

[2] K. Alam; A. V. Mitrofanov; V. V. Siberschmidt, Finite element analysis of forces of plane cutting of cortical bone, Comutational Materials Science, 2009, 46(3): 738-743

DOI: 10.1016/j.commatsci.2009.04.035

Google Scholar

[3] Cao Ziyang; He Ning; Li Liang; Finite element Analysis of the Influence of Cutting Edge Radius on the Size Effect in Micro Cutting, Mechanical Science and Technology for Aerospace Engineering, 2009, 28 (2): 186-190

Google Scholar

[4] Wang Wenkai; Tang Wencheng, Application of finite element method in the technology of high-speed metal cutting, Machinery Design & Manufacture, 2008, (6): 195-197

Google Scholar

[5] Liang Yingchun; Pen Hongmin; Bai Qingshun, Molecular dynamics simulation of nanometric cutting characteristics of single crystal Cu, Acta Metallurgica Sinica, 2009,45,(10):1205-1210

DOI: 10.1016/s1006-7191(08)60121-0

Google Scholar

[6] Komanduri R.; Chandrasekaran N.; Raff L. M.; Molecular Dynamics simulation of the nanometric cutting of silicon, Philosophical magazinge b-physics of condensed matter statistical mechanics electronic optical and magnetic properties, 2001, 81 (12): 1989:(2019)

DOI: 10.1080/13642810110069260

Google Scholar

[7] Yu Zhen; Chen Dingfang; Zhu Honghui; etc., Development of research in micro-nanometric cutting simulation based on molecular dynamics, Machinery Design & Manufacture, 2009, (11): 217-219

Google Scholar

[8] Zhu Pengzhe; Hu Yuanzhong; Ma Tianbao; etc., Study of AFM-based nanometric cutting process using molecular dynamics, Applied Surface Science, 2010, 256 (23): 7160-7165

DOI: 10.1016/j.apsusc.2010.05.044

Google Scholar

[9] X. Luo, Y. Liang, S. Dong. Atomic Study on Some Problems in Nanometric Cutting Mechanism High Technology Letters, 2000, 6(4):50-53.

Google Scholar

[10] Y. Liang, X. Luo, S. Dong. MDS Study of the Effects of Micro-vibrations of the Diamond Tool on the Nanometric Machined Surface Roughness. Proceeding of the 2nd Euspen International Conference, Turin, 2001:692-695.

Google Scholar

[11] Yang Xiaojing; Chen Zicheng; Fan Yujin; etc., Molecular Dynamics simulation of micro cutting process of abrasive wear, Transactions of the Chinese Society for Agricultural Machinery, 2007, 38 (5):161-164

Google Scholar

[12] Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Rev. Mod. Phys., 73, 515 (2001).

DOI: 10.1103/revmodphys.73.515

Google Scholar

[13] Brenner, D. W. Phys. Rev. B, 42, 9458 (1990).

Google Scholar

[14] Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B.; Sinnott, S. B. J. Phys.: Cond. Matt., 14, 783 (2002).

Google Scholar

[15] Gale, J. D. J. Chem. Phys., 102, 5423 (1998).

Google Scholar

[16] Ni, B.; Lee, K.-H.; Sinnott, S. B. J. Phys.: Cond. Matt., 16, 7261 (2004).

Google Scholar

[17] Njo, S. L.; Fan, J. F.; van de Graaf, B. J. Mol. Catal., A, 134, 79 (1998).

Google Scholar

[18] Pettifor, D. G.; Oleinik, I. I.; Nguyen-Manh, D.; Vitek, V. Comput. Mater. Sci., 23, 33 (2002).

Google Scholar

[19] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes, 2nd Edition, Cambridge University Press: Cambridge (1992).

DOI: 10.1017/s0263574700010675

Google Scholar

[20] Rappe, A. K.; Goddard, W. A., III J. Phys. Chem., 95, 3358 (1991).

Google Scholar

[21] Saunders, V. R.; Freyia-Fava, C.; Dovesi, R.; Roett, C. Comput. Phys. Commun., 84, 156 (1994).

Google Scholar

[22] Schroder, K.-P.; Sauer, J.; Leslie, M.; Catlow, C. R. A.; Thomas, J. M. Chem. Phys. Lett., 188, 320 (1992).

Google Scholar

[23] Streitz, F. H.; Mintmire, J. W. Phys. Rev. B, 50, 11996 (1994).

Google Scholar

[24] Sutton, A. P.; Chen, J. Philos. Mag. Lett., 61, 139 (1990).

Google Scholar

[25] Tersoff, J. Phys. Rev. Lett., 56, 632 (1986).

Google Scholar

[26] Tersoff, J. Phys. Rev. B, 37, 6991 (1988).

Google Scholar

[27] Vashishta, P.; Kalia, R. K.; Rino, J. P.; Ebbsjo, I. Phys. Rev. B, 41

Google Scholar

[28] Wolf, D.; Keblinski, P.; Phillpot, S. R.; Eggebrecht, J. J. Chem. Phys., 110, 8254 (1999).

Google Scholar

[29] Donald W.Brenner, Phys. Rev. B42, 9458(1990).

Google Scholar

[30] Verlet, L. "Computer 'Experiments' on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules", Phys. Rev., 159, 98 (1967).

DOI: 10.1103/physrev.159.98

Google Scholar