Dealloying Behavior of Al-Cu-Sn Ternary Alloy in an Alkaline Solution

Article Preview

Abstract:

In this article, a new ternary Al-Cu-Sn alloy system has been exploited through chemical dealloying in a 20wt% NaOH solution for 8 hours at different temperatures. The experimental results show the dealloying temperature plays a significant role in the formation of Cu6Sn5 and the length scales of the small-sized ligament/channels in fixed delloying duration. With the increase of dealloying temperature, more new phase Cu6Sn5 emerges and the length scales of the small-sized ligament/channels increase. Additionally, the as-dealloyed samples have three-dimensional (3D) structure composed of large-sized channels (hundreds of nanometers) and small-sized channels (tens of nanometers). Both large and small-sized pores are 3D, open and bicontinuous.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

774-779

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.C. Bond and D.T. Thompson: Catalysis by gold, Catal. Rev Vol. 41 (1999), p.319

Google Scholar

[2] T. You, O. Niwa, M. Tomita and S. Hirono: Anal. Chem. Vol. 75 (2003), p. (2080)

Google Scholar

[3] J. Weissmueller, R.N. Viswanath, D. Kramer, P. Zimmer, R. Wuerschum and H.Gleiter: Science Vol. 300 (2003), p.312

Google Scholar

[4] S.H. Joo, S.J. Choi, K.J. Kwa and Z. Liu: Nature Vol. 412 (2001), p.169

Google Scholar

[5] S.C. Zhang, Y.L. Xing, J. Tao, F. Li, L. He, and W.B. Liu: J. Power Sources Vol. 196 (2011), p.13963

Google Scholar

[6] W.N. Shen, B. Dunn, C.D. Moore, M.S. Goorsky, T. Radetic and R. Gronsky: J. Mater. Chem. Vol. 10 (2000), p.657

Google Scholar

[7] H. Luo, L. Sun, Y. Lu, Y. S. Yan: Langmuir Vol. 20 (2004), p.10218

Google Scholar

[8] J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov and K. Sieradzki: Nature Vol. 410 (2001), p.450

DOI: 10.1038/35068529

Google Scholar

[9] K. Sieradzki, N. Dimitrov, D. Movrin, C. McCall, N. Vasiljevic and J. Erlebacher: J. Electrochem. Soc. Vol. 149 (2002), p. B370

DOI: 10.1149/1.1492288

Google Scholar

[10] C.X. Ji and P.C. Searson: J. Phys. Chem. Vol. B107 (2003), p.4494

Google Scholar

[11] M. Stratmann and M. Rohwerder: Nature Vol. 410 (2001), p.420

Google Scholar

[12] D.V. Pugh, A. Dursun and S.G. Corcoran: J. Electrochem. Soc. Vol. 152 (2005), p. B455

Google Scholar

[13] U.S. Min and J.C.M. Li: J. Mater. Res. Vol. 9 (1994), p.2878

Google Scholar

[14] B.W. Parks Jr, J.D. Fritz and H.W. Pickering: Scripta Mater. Vol. 23 (1989), p.951

Google Scholar

[15] J. Snyder, P. Asanithi, A.B. Dalton and J. Erlebacher: Adv. Mater. Vol. 20 (2008), p.4883

Google Scholar

[16] H.B. Lu, Y. Li and F.H. Wang: Scripta Mater. Vol. 56 (2007), p.165

Google Scholar

[17] Q. Zhen, C.C. Zhao, X.G. Wang, J.K. Lin, W. Shao, Z.H. Zhang and X.F. Bian: J. Phys. Chem. C Vol. 113 (2009), p.6694

Google Scholar

[18] J.C. Thorp, K. Sieradzki, L. Tang, P.A. Crozier, A. Misra, M. Nastasi, D. Mitlin and S. T. Picraux:J. Appl. Phys. Lett. Vol. 88 (2006), p.033110

Google Scholar

[19] Masataka Hakamada and Mamoru Mabuchi: Journal of Alloys and Compounds Vol. 485 (2009), p.583

Google Scholar

[20] A.J. Smith and Annu. Rev: J. Mater. Res. Vol. 35 (2005), p.127

Google Scholar

[21] I. Yamauchi and H. Kawamura: Journal of Alloys and Compounds Vol. 370 (2004), p.137

Google Scholar

[22] I. Yamauchi, H. Kawamura, K. Nakano and T. Tanaka: Journal of Alloys and Compounds Vol. 387 (2005), p.187

Google Scholar