Effects of Ion Doping at Different Sites on Electrical Properties of Ferroelectric Bi4Ti3O12 Ceramics

Article Preview

Abstract:

Pure, La3+ doped at A site, V5+ doped at B site, and La3+ and V5+ co-doped ferroelectric Bi4Ti3O12 (BTO), Bi3.25La0.75Ti3O12 (BLT), Bi4Ti2.98V0.02O3 (BTV) and Bi3.25La0.75Ti2.98V0.02O12 (BLTV) were successfully prepared by conventional sintering technique. The structures of the ceramics were investigated by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. X-ray diffraction indicated that assemblages of all sintered ceramics consist of a single phase of Bi4Ti3O12, implying that the A-site La3+ and B-site V5+ substitutions in this case do not affect the layered structure. Among these ceramics, BLTV ceramic exhibited the best electrical properties. The leakage current density of BLTV ceramic was only 1.3×10-4 Acm-2 at 40 KVcm-1, two orders of magnitude lower than BTO ceramic. Besides, a saturated ferroelectric hysteresis loops with largest remnant polarization 2Pr of 30.6μC/cm2 was observed for this sample. These suggested that the co-doped Bi4Ti3O12 ceramic by La3+ and V5+ at A and B sites showed advantages in application over the pure BTO, doped BLT and BTV ceramic, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 399-401)

Pages:

796-804

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.F. Scott, Jpn. J. Appl. Phys. 38 (1999) 2272-2274.

Google Scholar

[2] C.A. Paz de Araujo, J.D. Cuchlaro, L.D.McMillan, M.C. Scott and J.F. Scott, Nature 374 (1995) 627-629.

Google Scholar

[3] J.F. Scott, Ferroelectric Memories, Springer Press, Berlin 2000.

Google Scholar

[4] J.S. Kim, C.W. Ahn, H.J. Lee, S.Y. Lee, Ceramics International 30 (2004) 1565-1568.

Google Scholar

[5] J.F. Scott, C.A. Paz de Araujo, Science 246 (1989) 1400-1405.

Google Scholar

[6] K. Kato, C. Zheng, J.M. Finder, S.K. Dey, Y. Torii, J Am. Ceram. Soc. 81 (1998) 1869-1875.

Google Scholar

[7] B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401 (1999) 682-684.

Google Scholar

[8] A. Kingon, Nature 401(1999) 658-659.

Google Scholar

[9] R. Ramesh, S. Aggarwal, O. Auciello, Mater. Sci. Eng. R. 32 (2001) 191-236.

Google Scholar

[10] R. Ramesh, D.G. Schlom, Science 296 (2002) 1975-1976.

Google Scholar

[11] C.L. Du, S.T. Zhang, G.X. Cheng, M.H. Lu, Z.B. Gu, J. Wang, Y.F. Chen, Physica B 368 (2005) 157-162

Google Scholar

[12] M. Villegas, A.C. Cabllero, C. Moure, P. Duran, J.F. Fernandez, Journal of the European Ceramic Society 19 (1999) 1183-1186.

Google Scholar

[13] M. Villegas, T. Jardiel, G. Farias, J Am. Ceram. Soc. 24 (2004) 1025-1029.

Google Scholar

[14] Z.H. Bao, Y.Y. Yao, Y.N. Zhu, Y.N. Wang, Materials Letters 56 (2002) 861-866.

Google Scholar

[15] L.N. Zhang, R.Q. Chu, S.C. Zhao, G.R. Li, Q.R. Yin, Mater. Sci. Eng. B. 116 (2005) 99-103.

Google Scholar

[16] Y. Noguchi, M. Miyayama, Appl. Phys. Lett 78 (2001) 1903-1905.

Google Scholar

[17] R.D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32 (1976) 751-756.

DOI: 10.1107/s0567739476001551

Google Scholar

[18] Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi, Z. Hiroi, Appl. Phys. Lett. 79 (2001) 2791-2793.

DOI: 10.1063/1.1410877

Google Scholar

[19] M.S Tomar, R.E Melgarelo, A. Hidalgo, S.B Mazumder, R.S Katiyar, Appl. Phys. Lett. 83 (2003) 341-343.

Google Scholar

[20] R.E. Melgarelo, M.S Tomar, S. Bhaskar, P.S Dobal, R.S Katiyar, Appl. Phys. Lett. 81 (2002) 2611-2613.

Google Scholar

[21] B.S Kang, B.H Park, S.D Bu, S.H Kang, T.W Noh, Appl. Phys. Lett. 75(1999), 2644-2646.

Google Scholar

[22] Y. Noguchi, T. Matsumoto, M. Miyayama, Jpn. J. Appl. Phys., Part 2. 44 (2005) L570-572.

Google Scholar

[23] K. Yamamoto, Y. Kitanaka, M. Suzuki, M. Miyayama, Y. Noguchi, C. Moriyoshi, Y. Kuroiwa, Appl. Phys. Lett. 91 (2007) 162908-162911.

DOI: 10.1063/1.2800822

Google Scholar

[24] T. Friessnegg, S. Aggarwal, R. Ramesh, B. Nielsen, E.H. Poindexter, D.J. Keeble, Appl. Phys. Lett. 77 (2000) 127-129.

DOI: 10.1063/1.126898

Google Scholar

[25] L. Baudy, J. Appl. Phys. 86(1999) 1096-1105.

Google Scholar

[26] Q.Y Jiang, E.C Subbarao, L.E Cross, J. Appl. Phys. 75 (1994) 7433-7443.

Google Scholar

[27] U. Robels, G. Arlt, J. Appl. Phys. 73 (1993) 3454-3460.

Google Scholar

[38] N. Chan, R. Sharma, D. Smyth, J. Am. Ceram. Soc. 65 (1982) 167-170.

Google Scholar

[29] N. Chan, D. Smyth, J. Am. Ceram. Soc. 67 (1984) 285-288.

Google Scholar