Size Effect Analysis of Thermal Conductivity in Lithium Nanometer Film

Article Preview

Abstract:

Lithium is widely used in the pharmaceutical industry, fuel cell, ceramic industry, glass, lubricants, aluminum industry, refrigerant, nuclear industry and photovoltaic industry. The thermal properties of lithium are very important for the design and safe operation. The MEAM potential was applied to calculate thermal conductivity of lithium with emphasis on size effect analysis in the lithium nanometer film using non-equilibrium molecular dynamics simulation method. The results show that the lithium thermal conductivity increases with increasing film thickness. The obvious size effect and anisotropy of thermal conductivity are found in the lithium nanometer film. From the simulation results, the difference of normal and tangential thermal conductivity has been analyzed quantitatively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

1113-1118

Citation:

Online since:

November 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Tsenter, M. Golod, Lithium-ion battery software safety protection, IEEE AES Syst. Mag., vol. 23, Sept. 1998, pp.23-25, doi: 10. 1109/62. 715518.

DOI: 10.1109/62.715518

Google Scholar

[2] Manish Khandelwal, M. M. Mench, Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials, J. Power Sources, vol. 23, Aug. 2006, pp.1106-1115, doi: 10. 1016/j. jpowsour. 2006. 06. 092.

DOI: 10.1016/j.jpowsour.2006.06.092

Google Scholar

[3] K. Kurabayashi, M. Asheghi, M. Touzelbaev and K.E. Goodson, Measurement of the Thermal Conductivity Anisotropy in Polyimide Films, IEEE J. Microelectromech. Syst., vol. 8, Apr. 1999, pp.180-191, doi: 10. 1109/84. 767114.

DOI: 10.1109/84.767114

Google Scholar

[4] X. W. Zhou, S. Aubry, R. E. Jones, A. Greenstein, P. K. Schelling, Towards more accurate molecular dynamics calculation of thermal conductivity: case study of GaN bulk crystals, , Phys. Rev. B, vol. 79, Mar. 2009, pp.115201-115217.

DOI: 10.1103/physrevb.79.115201

Google Scholar

[5] Lin Sun, Chinh Le; Faisal Saied, Jayathi Y. Murthy, Performance of a Parallel Molecular Dynamics Program for Computation of Thermal Properties, Numer. Heat. Tr. B-Fund., vol. 51, Apr. 2007, pp.315-331, DOI: 10. 1080/10407790601144748.

DOI: 10.1080/10407790601144748

Google Scholar

[6] Wang Zenghui, Li Zhixin, Lattice dynamics analysis of thermal conductivity in silicon nanoscale film, Appl. Therm. Eng., vol. 26, Apr. 2006, pp.2063-2066, doi: 10. 1016/j. applthermaleng. 2006. 04. 020.

DOI: 10.1016/j.applthermaleng.2006.04.020

Google Scholar

[7] Wang Zenghui, Li Zhixin, Research on the out-of-plane thermal conductivity of nanometer silicon film,. Thin Solid Films, vol. 515, May 2006, pp.2203-2206, doi: 10. 1016/j. tsf. 2006. 03. 018.

DOI: 10.1016/j.tsf.2006.03.018

Google Scholar

[8] M. I. Baskes, Modified embedded-atom potentials for cubic materials and impurities,. Phys. Rev. B, vol. 46, Aug . 1992, pp.2727-2742, 10. 1103/PhysRevB. 46. 2727.

DOI: 10.1103/physrevb.46.2727

Google Scholar