[1]
D. S. Haliyo, S. R´egnier, and J. -C. Guinot, The adhesion based dynamic micro-manipulator, Eur. J. Mech. Vol. 22, p.903–916, (2003).
DOI: 10.1016/s0997-7538(03)00071-8
Google Scholar
[2]
K. Takahashi, H. Kajihara, M. Urago, S. Saito, Y. Mochimaru, and T. Onzawa, Voltage required to detach an adhered particle by Coulomb interaction for micromanipulation, J. Appl. Phys., Vol. 90, p.432–437, (2001).
DOI: 10.1063/1.1379353
Google Scholar
[3]
W. Zesch, M. Bmnner, A. Weber, Vacuum Tool for Handling Microobjects with a Nano robot, Proceedings of IEEE, International Conference on Robotics and Automation, (1997).
DOI: 10.1109/robot.1997.614405
Google Scholar
[4]
Osterberg P M, Senturia S D, M-test: a test chip for mems material property measurement using electrostatically actuated test structures, Journal of Microelectromech Syst, Vol. 6, pp: 107–118, (1997).
DOI: 10.1109/84.585788
Google Scholar
[5]
Bochobza-Degani O, Nemirovsky Y, Modeling the pull-in parameters of electrostatic actuators with a novel lumped two degrees of freedom pullin model, Sens Actuators 97–98: 569–578, (2002).
DOI: 10.1016/s0924-4247(01)00855-x
Google Scholar
[6]
Marc Dequesnes, S V Rotkin and N R Aluru, Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches, Nanotechnology 13 (2002) 120–131s.
DOI: 10.1088/0957-4484/13/1/325
Google Scholar
[7]
Rotkin SV, Analytical calculations for nanoscale electromechanical systems, Electrochem Soc Proc 6: 90–97, (2002).
Google Scholar
[8]
Lin WH, Zhao YP, Dynamic behavior of nanoscale electrostatic actuators, Chin Phys Lett Vol. 20, pp: 2070–2073, (2003).
Google Scholar
[9]
Y. T. Gu and L. C. Zhang, Deformation characterization of a nanoelectromechanical switch , Journal of Physics: Conference Series 34, p.118–123, (2006).
Google Scholar
[10]
Gupta RK, Electrostatic pull-in test structure design for in-situ mechanical property measurements of microelectromechanical systems, PhD thesis, MIT, Cambridge, (1997).
Google Scholar
[11]
Cheng J, Zhe J and Wu X, Analytical and finite element model pull-in study of rigid and deformable electrostatic microactuators, J. Micromech Microeng, Vol. 14, p.57–68, (2004).
DOI: 10.1088/0960-1317/14/1/308
Google Scholar
[12]
S. D. Senturia, R. M. Harris, B. P. Johnson, S. Kim, K. Nabors, M. A. Shulman, and J. K. White, A computer-aided design system for microelectromechanical systems (MEMCAD), J. Microelectromech Syst, vol. 1, p.3–13, (1992).
DOI: 10.1109/84.128049
Google Scholar
[13]
J. R. Gillbert, R. Legtenberg, and S. D. Senturia, 3D coupled electromechanics for MEMS: pplications of CoSolve-EM, in Proc. IEEEMEMS 95, p.122–127, (1995).
DOI: 10.1109/memsys.1995.472542
Google Scholar
[14]
Israelachvili JN, Inter molecular and surface forces, Academic, London, (1992).
Google Scholar
[15]
Hongben Zhou and Wolfgang Peukert, Modeling Adhesion Forces between Deformable Bodies by FEM and Hamaker Summation, Langmuir 2008, 24, 1459-1468.
DOI: 10.1021/la7023023
Google Scholar
[16]
Ravi P. Jaiswal, Gautam Kumar, Caitlin M. Kilroy, and Stephen P. Beaudoin, Modeling and Validation of the van der Waals Force during the Adhesion of Nanoscale Objects to Rough Surfaces: A Detailed Description, Langmuir, Vol. 25, p.10612–10623, (2009).
DOI: 10.1021/la804275m
Google Scholar
[17]
Buks E, Roukes ML, Stiction, adhesion energy, and the Casimir effect in micromechanical systems, Phys Rev, (2001).
DOI: 10.1103/physrevb.63.033402
Google Scholar