Fuzzy Controller for Positioning Tasks in Tactile Surgical Navigation

Article Preview

Abstract:

This paper presents a fuzzy controller for positioning control with a newly developed surgical navigation system which uses tactile signals as feedback to the operator. The advantage of using tactile vibrations to transmit feedback information about the position of the surgical tool relative to particular tissues is the reduction of the contant gaze of the operator from the field of operation to a remote screen. The Fuzzy controller was derived without any analytical system model and its efficiency was compared to that of an already developed classical controller.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 403-408)

Pages:

4794-4799

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Christos E. Constantinou, Sadao Omato, Yoshinobu Murayama, Multi- sensory surgical support system incoporating tactile, visual and auditory perception modlities, IEEE Fourth international conference on computer and information tachnology (2004).

DOI: 10.1109/cit.2004.1357304

Google Scholar

[2] Thomas Debus, Theresia Becker, Pierre Dupont, Tae-Jeong Tang and Robert Howe Multichannel Vibrotactile display for sensory substitution during teleoperation, SPIE international symposiom on intelligent sys- tems and advanced manufacturing, Newton, MA, 28-31 October (2001).

DOI: 10.1117/12.454744

Google Scholar

[3] Stanley A. Mungwe and Andreas Hein, Accuracy Analysis in Positioning and Milling with a Tactile Surgical Navigation System, 1st Interna- tional Conference on Applied Bionics and Biomechanics (IFMBE/IEEE), Venice, Italy, 14-16 October (2010).

Google Scholar

[4] Andreas Hein and Melina Brell conTACT - A Vibrotactile Display for Computer Aided Surgery, whc, pp.531-536, Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC'07), (2007).

DOI: 10.1109/whc.2007.33

Google Scholar

[5] Y. F. Peng, C. H. Chiu, W.R. Tsai, and M. H. Chou, Design of an omni- directional spherical robot: Using Fuzzy Control, Int. Multi Conf. Eng. and comp. comp. Scientists (2009), Hong Kong, Vol. I.

Google Scholar

[6] M. Vukobratovic, B. Borovac, and M. Rakovic Comparison of PID and Fuzzy logic controllers in humanoid robot control of small disturbances, Int. conf. Research and Education in Robotics (Eurobot 2008), Germany, pp.42-53.

DOI: 10.1007/978-3-642-03558-6_5

Google Scholar

[7] S. J. Song, J. W. Park, J. W. Shin, D.H. Lee, J. Choi and K. Sun A comparative study of fuzzy PID Control algorithm for Position Control Performance Enhancement in Real-time OS Based Laparoscopic Surgery Robot, Preceedings ICBME 2008, pp.1090-1093.

DOI: 10.1007/978-3-540-92841-6_268

Google Scholar

[8] Feng Lin, Robert D. Brandt and G. Saikalis, Self-Tuning of PID Controls by Adaptive Interaction, Proc. of the American Control Conference Chicago, Illinois, June (2000).

DOI: 10.1109/acc.2000.879256

Google Scholar

[9] Robert D. Brandt and F. Lin, Theory of Adaptive Interaction, AFI Press, (1998).

Google Scholar

[10] Petros Loannou and Baris Fidan, Adaptive Control Tutorial, Advances in design and Control.

Google Scholar

[11] L. Nolte,L. Zamorano, H. Visarius, U. Berlemann, F. Langlotz, E. Arm, and O. Scharzenbach, Clinical evaluation of a system for precision enhancement in spine surgery, Clin Biomech (Bristol, avon), vol. 10 no. 6, pp.293-303, sept. (1995).

DOI: 10.1016/0268-0033(95)00004-5

Google Scholar

[12] Stanley A. Mungwe and Andreas Hein, Adaptive Controller for a Tactile Surgical Navigation System, Seventh IASTED International Conference on Biomedical Engineering, pp.160-163 ACTA Press, Zurich (2010).

Google Scholar

[13] P. Merloz, J. Tonetti, A. Eid, C. Faure, S. Lavalle, J. Troccaz, P. Sautot, A. Hamadeh, and P. Cinquin Computer Assisted Spine surgery, Clin. Orthp Relat Res, no. 337, pp.86-96, April (1997).

DOI: 10.1097/00003086-199704000-00011

Google Scholar

[14] W. L Bargar, A. Bauer, and M. Brner, The primary and rivision total hip replacement using the robodoc system, Clin. Orthp Relat Res, no. 354, pp.82-91, Spt. (1998).

DOI: 10.1097/00003086-199809000-00011

Google Scholar

[15] S. L Delp, S. D. Stulberg, B. Davis, F. Picard, and F. Leitner, Computer assited knee replacement, Clin. Orthp Relat Res, no. 354, pp.49-56, Sept. (1998).

DOI: 10.1097/00003086-199809000-00007

Google Scholar

[16] Kneissler, M., Hein, A., Maetzing, M., Thomale, U., Leuth T. C., Woiciechowsky, C, Concept and Clinaical Evaluation of Navigated Con- trol in Spine Surgery, IEEE/ASME International Conference on Advanced Intelligent Mechantronics (AIM 2003), Kobe, Japan. July, 20-24.

DOI: 10.1109/aim.2003.1225493

Google Scholar

[17] Melina Brell, Andreas Hein, Positioning Task in Multimodal Computer navigated Surgery, Multimedia signal processing and systems in Health- care and life sciences, 18(2), 2008, 112-116.

Google Scholar

[18] Andreas Hein, Carsten Lenze, Melina Brell Preliminary Evaluation of a Force-Sensing Human-Machine Interface for an Interactive Robotic System, IEEE/RSJ International Conference on Intelligent Robots and Systems, p.983–988. IEEE Press, Beijing, China (2006).

DOI: 10.1109/iros.2006.281779

Google Scholar

[19] Dieudonne´ Jean, Foundations of modern analysis , Boston, MA: Aca- demic Press, MR0349288.

Google Scholar

[20] Melina Brell, Eine vibrotaktile Mensch-Machine-Schnittstelle fr chirur- gische Applikationen, Fortschritt-Berichte VDI, Reihe 17, Nr. 276, VDI verlag, ISBN 978-3-18-327617-2 (2010).

Google Scholar